

ENGINEERING TOMORROW

Technical Information

H1T 045/053/060/068 Axial Piston Tandem Pumps

Revision history

Table of revisions

Date	Changed	Rev
May 2024	Added J8 control option	1003
February 2024	Removed references to HDC control	1002
December 2021	Added HDC control	1001
April 2021	Corrected interface with ECU graphic	0905
June 2020	Added section title in ports chapter for clarity	0904
March 2020	Updated port information and changed document number from BC00000060	0903
July 2018	Major revision.	0801
June 2018	Angle sensor chapters added.	0701
September 2017	add G6 option	0603
June 2017	minor edit page 40	0602
April 2017	add 60-68	0601
November 2015	Master Model Code changes	0501
2010-2014	Various changes.	BA-EA
Jul 2009	First edition	AA

Contents

Technical Specifications		
-	H1 Pumps General Specification	4
	Technical Data for H1 Tandem Pumps	
	Operating parameters for H1 Tanden Pumps	
	Fluid Specification	
	External radial shaft loads H1 Tandem	
	Bearing Life	
	Mounting flange loads H1T 045/053	
	Mounting flange loads H1T 060/068	
	Case drain	
Master Model Code		
Master Model Code	H1T rotation parts and second nump options	0
	H1T rotation, ports, and second pump options H1T Controls Options	
	H1T Orifice and Displacement Limiter Options	
	H1T Endcap and Mounting Options	
	H1T Input Shaft and Aux Mounting Options	
	H1T High Pressure Relief Valve Options	
	H1T Pressure Limiter, Charge Pump, and Filtration Options	
	H1T Charge Pressure Relief, Special Hardware and Settings	
Control Options		
	Electrical Displacement Control (EDC)	
	Control Solenoid Data	15
	Manual Displacement Control (MDC)	
	Forward-Neutral-Reverse Control (FNR)	
	Control response	21
	Non feedback proportional electric control (NFPE)	
	Manual Override (MOR)	
	Swashplate angle sensor for EDC controls	
	Swash plate angle sensor parameters (EDC)	
	Swash plate angle sensor connector	
	Interface with ECU (EDC)	
	Swash Plate Angle Sensor for NFPE and AC2 Controls	27
	Swash Plate Angle Sensor Parameters (NFPE/AC)	
	Swash-plate Angle Sensor Connector (NFPE/AC2)	
	Interface with ECU (NFPE)	
	Control-Cut-Off (CCO) and Brake Release Valves	
	Displacement Limiter	
Port Locations		
r or cocations	Port Locations H1T 045/053 Tandem	32
	Port Locations H1T 060/068 Tandem	
		J-
Dimensions		
	Dimensions H1T 045/053 Tandem	
	Dimensions H1T 060/068 Tandem	
	Input shaft, option G1 (SAE C, 14 teeth) (045/053/060/068)	
	Input shaft, option G5 (SAE B-B, 15 teeth) (045/053 only)	
	Input shaft, option G6, (19 teeth-long) (045/053 only)	
	Input shaft, option F1, (060/068 only)	
	Auxiliary mounting pads	
	060/068 Control dimensions	
	045/053 Control dimensions	
	Center section coupling, torque rating	58
	Control Cut Off (CCO)	
	045/053 CCO	59
	060/068 CCO	60
	Displacement limiter, H1 Tandem, option B	61

H1 Pumps General Specification

Axial piston closed circuit variable displacement pumps of cradle swash-plate design with clockwise or counterclockwise direction of rotation.

Pipe connections

- Main pressure ports H1P 045/053: SAE straight thread O-ring boss
- Main pressure ports H1P 060/068: ISO split flange boss
- Remaining ports: SAE straight thread O-ring boss

Recommended installation position

Pump installation position is discretionary, however the recommended control position is on the top or at the side with the top position preferred. If the pump is installed with the control at the bottom, flushing flow must be provided through port M14 located on the EDC, FNR and NFPE control.

Vertical input shaft installation is acceptable. If input shaft is at the top, 1 bar case pressure must be maintained during operation. The housing must always be filled with hydraulic fluid. Recommended mounting for a multiple pump stack is to arrange the highest power flow towards the input source. Consult Danfoss for nonconformance to these guidelines.

Auxiliary cavity pressure

Auxiliary cavity pressure will be inlet pressure with internal charge pump or case pressure with external charge supply. For reference see Operating Parameters. Please verify mating pump shaft seal capability.

Technical Data for H1 Tandem Pumps

Feature	Unit	045	053	060	068
Displacement	cm ³ [in ³]	45.0 [2.75]	53.8 [3.28]	60.4 [3.69]	68.0 [4.15]
Flow at rated (continuous) speed $*$	l/min [US gal/min]	153 [40]	183 [48]	210 [55.5]	238 [62.8]
Torque at maximum displacement (theoretical)	N•m/bar [lb•in/1000 psi]	0.8 [488]	0.9 [549]0.007 8 [0.00575]	0.96 [590]	1.08 [610]
Mass moment of inertia of rotating components	kg•m ² [slug•ft ²]	0.0077 [0.00568]	0.0078 [0.00575	0.0143 [0.01055]	0.0143 [0.01052]
Mass (weight dry, without charge pump or auxiliary flange)	kg [lb]	65 [143]	65 [143]	96.2 [212]	96.2 [212]
Oil volume	l [US gal]	2.3 [0.61]	2.3 [0.61]	4.2 [1.1]	4.2 [1.1]

Technical Data

* Applies for each rotating group.

Physical properties

Description	045/053	060/068
Mounting flange per ISO 3019-1	Flange 101-2 (SAE B), special bolt	Flange 127-4 (SAE C)
Input shaft outer diameter, splines per ISO 3019-1	 Ø25 mm - 4 (SAE B-B, 15 teeth) Ø32 mm - 4 (SAE-C, 14 teeth) Ø31 mm - 4 (19 teeth) 	 Ø32 mm - 4 (SAE C, 14 teeth) Ø35 mm - 4 (SAE C, 21 teeth)

Physical properties (continued)	Physico	rties (contir	ued)
---------------------------------	---------	---------------	------

Description	045/053	060/068	
Auxiliary mounting flange with metric fasteners, shaft outer diameter and splines per ISO 3019-1	Flange 82–2 outer dia: • Ø16 mm - 4 (SAE A, 9 teeth) • Ø19 mm - 4 (SAE A, 11 teeth) Flange 101–2 outer dia: • Ø22 mm - 4 (SAE B, 13 teeth) • Ø25 mm - 4 (SAE B-B, 15 teeth)	Flange 101–2 outer dia: • Ø22 mm - 4 (SAE B, 13 teeth) • Ø25 mm - 4 (SAE B-B, 15 teeth)	
Charge inlet port per ISO 11926-1	7/ ₈ -14 (SAE O-ring boss)	1 ¹ / ₁₆ -14 (SAE O-ring boss)	
Main port configuration	ISO 11926-1: 1 ⁵ / ₁₆ -12 (SAE O-ring boss)	ISO 6162: M12 x 1.75 (Split flange)	
Other ports	SAE O-ring boss		
Customer interface threads	Metric fasteners		

Operating parameters for H1 Tandem Pumps

Input Speed (at minimum charge/control pressure)

Description	Size 045/053	Size 060/068
Minimum for external charge supply ¹⁾	min ⁻¹ (rpm)	500 min ⁻¹ (rpm)
Rated	3400 min ⁻¹ (rpm)	3500 min ⁻¹ (rpm)
Maximum	3500 min⁻¹ (rpm)	4000 min ⁻¹ (rpm)

¹⁾ Full performance (pressure and displacement) possible at minimum charge and control pressure supply.

System pressure

Description		Size 045 Size 053		Size 060	Size 068
System pressure	Max. working	450 bar [6527 psi] 400 bar [5802 psi] 4 45 bar [653 psi] 4		420 bar [6090 psi]	380 bar [5510 psi]
	Maximum (peak)			450 bar [6525 psi]	400 bar [5800 psi]
	Max. low loop			45 bar [650 psi]	
	Min. low loop			10 bar [145 psi]	
Control pressure	Min. at corner power (EDC, MDC, FNR)	21.5 bar [312 psi] 18.5 bar [270 psi]			
	Maximum	40 bar [580 psi]		40 bar [580 psi]	

Other pressure type for all tandem pumps

Description		045–068
Charge pressure	Minimum without CCO valve	14.5 bar [210 psi]
	Minimum with CCO valve	18 bar [265 psi]
	Maximum	34 bar [493 psi]
Case pressure	Rated	3.0 bar [44.0 psi]
	Maximum	5.0 bar [73.0 psi]
Lip seal external	Maximum	0.4 bar [5.8 psi]

Fluid Specification

Viscositv

·		
Intermittent ¹⁾	5 mm ² /s [42 SUS]	
Minimum	7 mm ² /s [49 SUS]	
Recommended range	12 – 80 mm ² /s [66 – 370 SUS]	
Maximum	1600 mm ² /s [7500 SUS]	

¹⁾ Intermittent = Short term t < 1 min per incident and not exceeding 2 % of duty cycle based load-life.

Temperature

Minimum ¹⁾	-40°C [-40°F]	
Rated	104°C [220°F]	
Recommended range ²⁾	60 – 85°C [140 – 185°F]	
Maximum Intermittent	115°C [240°F]	

¹⁾ Cold start = Short term t > 3 min, p \leq 50 bar [725 psi], n \leq 1000 min-1 (rpm).

²⁾ At the hottest point, normally case drain port.

External radial shaft loads H1 Tandem

External radial shaft loads

H1 pumps are designed with bearings that can accept some external radial loads. The external radial shaft load limits are a function of the load position and orientation, and the operating conditions of the unit. External radial shaft loads impact lifetime. For lifetime calculations please contact Danfoss representative.

The **maximum allowable radial load (R_e)** is based on the maximum external moment (M_e) and the distance (L) from the mounting flange to the load.

$$R_e = \frac{M_e}{L}$$

It may be determined using the following formula:

Radial load position (045/053 shown)

M_e = shaft moment

L = flange distance

R_e = external force to the shaft

Thrust loads should be avoided. Contact factory in the event thrust loads are anticipated.

Bearing Life

Maximum external shaft load based on shaft deflection

External radial moment	Unit	Size 045 / 053	Size 060 / 068
M _e	N•m [lbf•in]	104 [920]	104 [920]

All external shaft loads affect bearing life. In applications with external shaft loads, minimize the impact by positioning the load at 0° or 180° as shown in the figure.

Danfoss recommends clamp-type couplings for applications with radial shaft loads.

Contact your Danfoss representative for an evaluation of unit bearing life if you have continuously applied external loads exceeding 25 % of the maximum allowable radial load (Re) or the pump swashplate is positioned on one side of center all or most of the time.

Mounting flange loads H1T 045/053

H1 tandem pump front flange load

Mounting flange loads H1T 045/053, Controls on top

The moments shown below apply for the control orientation on top or side.

Mounting flange loads, Control on top

 M_R = 2020 N·m [17 880 lbf·in] Shock load moment: M_S = 4110 N·m [36 380 lbf·in] Mounting flange loads, Control on side

Shock load moment: **M_s** = 2930 N•m [25 935 lbf•in]

For more information, see *H1 Axial Piston Pumps, Basic Information*, **BC152886483968**, the section "Mounting flange loads".

Mounting flange loads H1T 060/068

H1 tandem pump front flange load

Mounting flange loads H1T 060/068, Controls on top

Rated moment: **M**_R = 2190 N•m [19 380 lbf•in]

Shock load moment: **M**_S = 6560 N•m [58 060 lbf•in]

P109515

The moments shown apply for the control orientation on top or side.

For more information, see *H1 Axial Piston Pumps, Basic Information*, **BC152886483968**, the section "Mounting flange loads".

Case drain

The tandem housings are connected through the center section via a drilled hole. The charge relief valve discharges oil into the front housing. In order to provide positive flow through both housings, use of the rear housing case drain is required. The front housing case pressure ports should only be used if the pump is used as a common drain manifold for the vehicle where external drain flow is brought into the rear housing and discharged out the front.

The allowable case pressures must be met accordingly.

H1T rotation, ports, and second pump options

Displacement (Front pump, second pump see "C")

Code	Description
045	45 cm ³ [2.75 in ³]
053	53.8 cm ³ [3.28 in ³]
060	60 cm ³ [3.66 in ³]
068	68 cm ³ [4.15 in ³]

A – Rotation

L	Left hand (counter clockwise)
R	Right hand (clockwise)

B – Product version

A Revision code		
	А	Revision code

Z – Port configuration

А	Inch, Customer O-ring port sealing according to ISO 11926-1
---	---

C – Second pump size

Ν	Frame size of rear stage equal front stage (default)
А	Rear stage kit 45cc/rev (only use with 53cc/rev front stage)
В	Rear stage kit 60cc/rev (only use with 68cc/rev front stage)

H1T Controls Options

D – Controls

Code	Control type	Input	Miscellaneous options	Connector
A2	EDC	12 V		DEUTSCH
A3	EDC	24 V		DEUTSCH
A4	EDC	12 V	MOR	DEUTSCH
A5	EDC	24 V	MOR	DEUTSCH
A9	FNR	12 V	MOR	DEUTSCH
H3	EDC	24 V	Angle sensor	DEUTSCH
H4	MDC front unit	—	Gain 0.52 with NSS	—
	FNR rear unit	12 V	Gain 0.52 with MOR	DEUTSCH
H6	EDC	12 V	Angle sensor + MOR	DEUTSCH
H7	EDC	24 V	Angle sensor + MOR	DEUTSCH
B1	FNR	24 V	MOR	DEUTSCH
B6	FNR front unit	12 V	—	DEUTSCH
DO	EDC rear unit	12 V	Gain 0.52	DEUTSCH
D7	EDC front unit	12 V	MOR	DEUTSCH
	FNR rear unit	12 V	MOR	DEUTSCH
D9	MDC front unit	—	Gain 0.52 with NSS	—
	MDC rear unit	—	Gain 0.52	DEUTSCH

D – Controls (continued)

Code	Control type	Input	Miscellaneous options	Connector
J8	MDC front unit	-	Gain 0.52 with NSS	—
	EDC rear unit	12 V	MOR	DEUTSCH
N1	NFPE ¹	12 V	MOR	DEUTSCH
N2	NFPE ¹	24 V	MOR	DEUTSCH
N5	NFPE ¹	12 V	Angle sensor + MOR	DEUTSCH
N6	NFPE ¹	24 V	Angle sensor + MOR	DEUTSCH
M1	MDC	—	—	—
M2	MDC	—	NSS	—

¹ Align with options: E: Displacement limiters and W: Special hardware.

H1T Orifice and Displacement Limiter Options

r – Onno	es (11111)			
Code	Tank (A+B)	Р	A/B	Note
C3		No orifice		Not to be used for FDC controls and mobile applications.
C1	-	-	0.8	Not to be used for FDC controls.
C6	1	-	-	
C7	1.3	-	-	
C8	0.6	0.8	-	
С9	0.6	1	-	
D1	0.8	1	-	To be used for MDC controls only.
D2	0.8	1.3	-	
D3	1	1.3	-]
D4	1	1.3	1.3	1
D5	0.6	0.6	0.8]

F – Orifices (mm)

E – Displacement limiter

N	None
С	No limiters, with nested springs, required for NFPE
В	Adjustable externally
D	Adjustable externally with nested springs, required for NFPE

H1T Endcap and Mounting Options

G – Endcap options

Code	Description	045/053	060/068
E7	Tandem same-sided SAE O-ring boss ports, (HPRV only) standard	•	—
D1	Tandem same-sided SAE O-ring boss ports with Control Cut Off (HPRV only), 12 V	•	_
F7	Tandem same-sided SAE O-ring boss ports with Control Cut Off (HPRV only), 24 V	•	-
H3	Tandem Opp. Port Code 62, 12V CCO & Brake	—	•
H4	Tandem Opp. Port Code 62, 24V CCO & Brake	—	•
H5	Tandem Opp. Port Code 62, 12V CCO	-	•

G – Endcap options (continued)

Code	Description	045/053	060/068
H6	Tandem Opp. Port Code 62, 24V CCO	_	•
H7	Tandem Opp. Port Code 62	—	•
H8	Tandem Opp Port Code 62, Opposite Charge Inlet	—	•

H – Mounting

F	ISO 3019-1, flange 101-2 SAE B (045/053)
н	ISO 3019-1, flange 127-4 SAE C (060/068)
J	ISO 3019-1, flange 101-2 SAE B and speed sensor (045/053)

H1T Input Shaft and Aux Mounting Options

J – Input shaft

Code	Description	045/053	060/068
G1	ISO 3019-1, outer Ø32 mm - 4 (SAE C, 14 teeth splined shaft 12/24 pitch)	•	•
G5	ISO 3019-1, outer Ø25 mm - 4 (SAE B-B, 15 teeth splined shaft 16/32 pitch)	•	_
G6	ISO 3019-1, outer Ø31 mm - 4 (19 teeth splined shaft 16/32 pitch) (45/53 only)	•	_
F1	ISO 3019-1 outer diameter 35mm -4 (SAE C, 21 teeth splined shaft 16/32 pitch) (60/68 only)	-	•

K – Auxiliary mounting pad ISO 3019-1 without charge pump, with shipping cover

Code	Description	045/053	060/068
NN	No auxiliary mounting pad, No shipping cover	•	—
H2	Flange 82 - 2, outer Ø16 mm - 4 (SAE A, 9 teeth 16/32 coupling) (45/53)		•
H1	Flange 82 - 2, outer Ø19 mm - 4 (SAE A, 11 teeth 16/32 coupling) (45/53)		•
H3	Flange 101 - 2, outer Ø22 mm - 4 (SAE B, 13 teeth 16/32 coupling)		•
H5	Flange 101 - 2, outer Ø25 mm - 4 (SAE B-B, 15 teeth 16/32 coupling)		•

Align with options: S – Charge pump and Y – Special settings.

H1T High Pressure Relief Valve Options

M – High pressure relief valve setting

Code	Pressure setting (Use the selection for ports A, B, C and D)	045	053	60	68
13	130 bar [1885 psi]			—	—
15	150 bar [2175 psi]			—	—
18	180 bar [2610 psi]		•	•	•
20	200 bar [2900 psi]		•	•	•
23	230 bar [3336 psi]		•	•	•
25	250 bar [3630 psi]			•	
28	280 bar [4061 psi]				

Code	Pressure setting (Use the selection for ports A, B, C and D)	045	053	60	68
30	300 bar [4350 psi]		•	•	•
33	330 bar [4786 psi]		•	•	•
35	350 bar [5080 psi]		•	•	•
38	380 bar [5510 psi]		•	•	•
40	400 bar [5800 psi]		—	•	—
41	410 bar [5946 psi]		-	-	—
42	420 bar [6090 psi]		-		—

NO bypass, side "A" (front pump) N – High pressure relief valve setting, NO bypass side "B" (front pump) P – High pressure relief valve setting, NO bypass, side "C" (rear pump) R – High pressure relief valve setting, NO bypass, side "D" (rear pump).

H1T Pressure Limiter, Charge Pump, and Filtration Options

Pressure limiter 060/068

Code	Pressure setting (Use the selection for ports A, B, C and D)	060	068
AE	150 bar PL / 200 bar HPRV		
AH	180 bar PL / 250 bar HPRV	•	•
BK	200 bar PL / 250 bar HPRV	•	
BC	230 bar PL / 280 bar HPRV	•	•
BE	250 bar PL / 300 bar HPRV	•	•
BH	280 bar PL / 330 bar HPRV	•	•
CK	300 bar PL / 350 bar HPRV	•	•
СС	330 bar PL / 380 bar HPRV	•	•
CE	350 bar PL / 400 bar HPRV	•	
СН	380 bar PL / 430 bar HPRV	•	
DK	400 bar PL / 450 bar HPRV		-
DA	410 bar PL / 450 bar HPRV	•	-
DB	420 bar PL / 450 bar HPRV	•	-

S – Charge pump

N No charge pump, external charge supply (Align with options: T – Filtration)

T – Filtration

Р	Remote full charge flow filtration (045/053 only)
E	External charge filtration (060/068 only)

H1T Charge Pressure Relief, Special Hardware and Settings

V – Charge pressure relief setting

Code	Description	
18	18 bar [261 psi]	
20	20 bar [290 psi]	Not to be used for NFPE controls.
22	22 bar [319 psi]	
24	24 bar [348 psi]	
26	26 bar [377 psi]	
28	28 bar [406 psi]	
30	30 bar [435 psi]	
32	32 bar [464 psi]	
34	34 bar [493 psi]	

W – Special hardware features

PN	EDC/FNR/MDC valve plate (without a handle)
P1	NFPE valve plate (Align with options: D – Control selection and E – Displacement limiters)
P4	EDC/FNR/MDC Valve Plate and Speed Ring (045/053 only)
H1	EDC/FNR/MDC Valve Plate, included MDC Handle (All frames)
H2	EDC/FNR/MDC Valve Plate, MDC Handle Front, System Loop Bypass (045/053 only)

X – Paint and nametag

NNN Black paint and Danfoss nametag

Y – Special settings

NNN	None
M00	MDC (handle in standard position)

Electrical Displacement Control (EDC)

An EDC is a displacement (flow) control. Pump swash plate position is proportional to the input command and therefore vehicle or load speed (excluding influence of efficiency), is dependent only on the prime mover speed or motor displacement.

The Electrical Displacement Control (**EDC**) consists of a pair of proportional solenoids on each side of a three-position, four-way porting spool. The proportional solenoid applies a force input to the spool, which ports hydraulic pressure to either side of a double acting servo piston. Differential pressure across the servo piston rotates the swash plate, changing the pump's displacement from full displacement in one direction to full displacement in the opposite direction.

A serviceable 170 µm screen is located in the supply line immediately before the control porting spool.

Under some circumstances, such as contamination, the control spool could stick and cause the pump to stay at some displacement.

EDC schematic, feedback from swash plate

Control signal requirements, EDC H1T

Pump displacement vs. control current

EDC control current

Voltage		12 V _{DC}	24 V _{DC}
Minimum current to stroke pump	a*	640 mA	330 mA
	b	1640 mA	820 mA
Pin connections	· ·		

* Factory test current, for vehicle movement or application actuation expect higher or lower value.

Control Solenoid Data

Description		12 V	24 V		
Maximum current		1800 mA	920 mA		
Nominal coil resistance	Nominal coil resistance @ 20 °C [68 °F]		14.20 Ω		
@ 80 °C [176 °F]		4.52 Ω	17.52 Ω		
Inductance		33 mH	140 mH		
PWM signal frequency Range		70 – 200 Hz	70 – 200 Hz		
	Recommended*		100 Hz		
······································		IP 67	IP 67		
		IP 69K with mating	IP 69K with mating connector		
Connector color	Connector color		Black		

* PWM signal required for optimum control performance.

Control response

H1T controls are available with optional control passage orifices to assist in matching the rate of swashplate response to the application requirements (e.g. in the event of electrical failure).

The time required for the pump output flow to change from zero to full flow (acceleration) or full flow to zero (deceleration) is a net function of spool porting, orifices, and charge pressure.

A swash-plate response times table is available for each frame size. Testing should be conducted to verify the proper orifice selection for the desired response. Typical response times at the following conditions:

 Δ p = 250 bar [3626 psi] Charge pressure = 20 bar [290 psi] Viscosity and temperature = 30 mm²/s [141 SUS] and 50 °C [122 °F] Speed = 1800 min⁻¹ (rpm)

Response time, EDC 045/053

Stroking direction	0.8 mm [0.03 in] orifice	1.3 mm [0.05 in] orifice	No orifice
Neutral to full flow	1.7 s	0.9 s	0.5 s
Full flow to neutral	1.1 s	0.6 s	0.3 s

Response time, EDC 060/068

Stroking direction	0.8 mm [0.03 in] Orifice	1.3 mm [0.05 in] Orifice	No orifice
Neutral to full flow	2.6 s	1.2 s	0.8 s
Full flow to neutral	1.7 s	0.8 s	0.4 s

Manual Displacement Control (MDC)

A Manual proportional Displacement Control (**MDC**) consists of a handle on top of a rotary input shaft. The shaft provides an eccentric connection to a feedback link. This link is connected on its one end with a porting spool. On its other end the link is connected the pumps swashplate.

This design provides a travel feedback without spring. When turning the shaft the spool moves thus providing hydraulic pressure to either side of a double acting servo piston of the pump.

Differential pressure across the servo piston rotates the swash plate, changing the pump's displacement. Simultaneously the swashplate movement is fed back to the control spool providing proportionality between shaft rotation on the control and swash-plate rotation. The MDC changes the pump displacement between no flow and full flow into opposite directions.

Under some circumstances, such as contamination, the control spool could stick and cause the pump to stay at some displacement.

For the MDC with CCO option the brake port (X7) provides charge pressure when the coil is energized to activate static function such as a brake release. The X7 port must not be used for any continuous oil consumption.

The MDC is sealed by means of a static O-ring between the actuation system and the control block. Its shaft is sealed by means of a special O-ring which is applied for low friction. The special O-ring is protected from dust, water and aggressive liquids or gases by means of a special lip seal.

Manual Displacement Control

Deadband on **B** side: $\mathbf{a} = 3^{\circ} \pm 1^{\circ}$ Maximum pump stroke: $\mathbf{b} = 30^{\circ} \pm 2/-1^{\circ}$ Required customer end stop: $\mathbf{c} = 36^{\circ} \pm 3^{\circ}$ Internal end stop: $\mathbf{d} = 40^{\circ}$

MDC operation

The MDC provides a mechanical dead-band required to overcome the tolerances in the mechanical actuation. The MDC contains an internal end stop to prevent turning the handle into any inappropriate position.

The MDC provides a permanent restoring moment appropriate for turning the MDC input shaft back to neutral position only. This is required to take the backlash out of the mechanical connections between the Bowden cable and the control.

High case pressure may cause excessive wear and the NSS to indicate that the control is not in neutral position. In addition, if the case pressure exceeds 5 bar there is a risk of an insufficient restoring moment. The MDC is designed for a maximum case pressure of 5 bar and a rated case pressure of 3 bar.

Danfoss

Control Options

- Customers must install some support to limit the setting range of their Bowden cable to avoid an overload of the MDC.
- Customers can apply their own handle design but they must care about a robust clamping connection between their handle and the control shaft and avoid overload of the shaft.
- Customers can connect two MDC's on a tandem unit in such a way that the actuation force will be transferred from the pilot control to the second control. The kinematic of the linkages must ensure that either control shaft is protected from torque overload.

Caution

Using the internal spring force on the input shaft is not an appropriate way to return the customer connection linkage to neutral, or to force a Bowden cable or a joystick back to neutral position. It is not applicable for any limitation of the Bowden cable stroke, except the applied torque to the shaft will never exceed 20 N•m.

MDC Torque

Description	Value
Torque required to move handle to maximum displacement	1.4 N•m [12.39 lbf•in]
Torque required to hold handle at given displacement	0.6 N•m [5.31 lbf•in]
Maximum allowable input torque	20 N•m [177 lbf•in]

Caution

Volumetric efficiencies of the system will have impacts on the start and end input commands.

MDC shaft rotation

Pump shaft rotation*	Clockwise (CW)		Counter-clockwise (CCW)	
MDC shaft rotation	CW	ссw	cw	ccw
Port A	in (low)	out (high)	out (high)	in (low)
Port B	out (high)	in (low)	in (low)	out (high)
Servo port high pressure	M5	M4	M5	M4

* As seen from shaft side.

Control response

H1T controls are available with optional control passage orifices to assist in matching the rate of swashplate response to the application requirements (e.g. in the event of electrical failure).

The time required for the pump output flow to change from zero to full flow (acceleration) or full flow to zero (deceleration) is a net function of spool porting, orifices, and charge pressure.

A swash-plate response times table is available for each frame size. Testing should be conducted to verify the proper orifice selection for the desired response. Typical response times at the following conditions:

∆ p = 250 bar [3626 psi]

Charge pressure = 20 bar [290 psi] Viscosity and temperature = 30 mm²/s [141 SUS] and 50 °C [122 °F] Speed = 1800 min⁻¹ (rpm)

Response time, MDC 045/053

Code	Orifice description (mm)				Stroking direction (sec)	
	Р	A	В	Tank (A+B)	Neutral to full flow	Full flow to neutral
С3	-	-	-	-	0.3	0.4
C6	-	-	-	1	0.9	0.8
С7	-	-	-	1.3	0.6	0.6
C8	0.8	-	-	0.6	2.9	2.0
С9	1	-	-	0.6	2.7	1.9
D1	1	-	-	0.8	1.7	1.2
D2	1.3	-	-	0.8	1.5	1.1
D3	1.3	-	_	1	1.1	0.8
D4	1.3	1.3	1.3	1	1.3	1.0
D5	0.6	0.8	0.8	0.6	5.4	2.8

Response time, MDC H1T

Code	Orifice description (mm)		Stroking	direction	
	Tank (A+B)	Р	A/B	Neutral to full flow	Full flow to neutral
С3		No orifice	•	S	S
C6	1	-	-	S	S
С7	1.3	-	-	S	S
D1	0.8	1	-	S	S
D2	0.8	1.3	-	S	S
D3	1	1.3	-	S	S
D4	1	1.3	1.3	S	S

For further data please contact your Danfoss representative.

Neutral start switch (NSS)

The Neutral Start Switch **(NSS)** contains an electrical switch that provides a signal of whether the control is in neutral. The signal in neutral is Normally Closed **(NC)**.

Neutral start switch schematic

Neutral start switch data

Max. continuous current with switching	8.4 A
Max. continuous current without switching	20 A
Max. voltage	36 V _{DC}
Electrical protection class	IP67 / IP69K with mating connector

Case Gauge Port M14

The drain port should be used when the control is mounted on the unit's bottom side to flush residual contamination out of the control.

Lever

MDC controls are available with optional lever/handle. Align with Settings: Y module in the model code.

Standard orientation 90° from input shaft

Forward-Neutral-Reverse Control (FNR)

The 3-position FNR control options **A9** (12 V) and **B1** (24 V) uses an electric input signal to switch the pump to a full stroke position. A serviceable 125 μ m screen is located in the supply line immediately before the control porting spool.

Under some circumstances, such as contamination, the control spool can stick and cause the pump to stay at some displacement.

Forward-Neutral-Reverse electric control (FNR)

Pump displacement vs. electrical signal

FNR control current

Voltage	12 V _{DC}	24 V _{DC}
Minimum current to stroke pump	750 mA	380 mA
Pin connections	any order	

Control response

H1T controls are available with optional control passage orifices to assist in matching the rate of swashplate response to the application requirements (e.g. in the event of electrical failure).

The time required for the pump output flow to change from zero to full flow (acceleration) or full flow to zero (deceleration) is a net function of spool porting, orifices, and charge pressure.

A swash-plate response times table is available for each frame size. Testing should be conducted to verify the proper orifice selection for the desired response. Typical response times at the following conditions:

 Δ p = 250 bar [3626 psi] Charge pressure = 20 bar [290 psi] Viscosity and temperature = 30 mm²/s [141 SUS] and 50 °C [122 °F] Speed = 1800 min⁻¹ (rpm)

Response Time, FNR

Stroking direction	Size combo	0.8 [0.03] orifice	1.3 [0.05] orifice	No orifice
Neutral to full flow	045/053	1.8 s	0.9 s	0.5 s
	060/068	2.7 s	1.3 s	0.8 s
Full flow to neutral	045/053	1.6 s	0.8 s	0.4 s
	060/068	2.3 s	1.1 s	0.5 s

Non feedback proportional electric control (NFPE)

The Non Feedback Proportional Electric (**NFPE**) control is an electrical automotive control in which an electrical input signal activates one of two proportional solenoids that port charge pressure to either side of the pump servo cylinder. The NFPE control has no mechanical feedback mechanism.

A serviceable 170 µm screen is located in the supply line immediately before the control porting spool.

Under some circumstances, such as contamination, the control spool could stick and cause the pump to stay at some displacement.

NFPE control

Control signal requirements, NFPE 045/053 Tandem

Control current

Voltage	a*mA	b mA	c mA	Pin connections
12 V	870	1290	1550	any order
24 V	440	670	775	

* Factory test current, for vehicle movement or application actuation expect higher or lower value.

DEUTSCH connector, 2-pin

Connector ordering data

Description	Quantity	Ordering data
Mating connector	1	DEUTSCH DT06-2S
Wedge lock	1	DEUTSCH W2S
Socket contact (16 and 18 AWG)	2	DEUTSCH 0462-201-16141
Danfoss mating connector kit	1	K29657

Description		12 V	24 V	
Maximum current		1800 mA	920 mA	
Nominal coil resistance	@ 20 °C [68 °F]	3.66 Ω	14.20 Ω	
	@ 80 °C [176 °F]	4.52 Ω	17.52 Ω	
Inductance		33 mH	140 mH	
PWM signal frequency	Range	70 – 200 Hz		
	Recommended*	100 Hz		
IP Rating	IEC 60 529	IP 67		
	DIN 40 050, part 9	IP 69K with mating connector		
Connector color		Black	Black	

* PWM signal required for optimum control performance.

Pump output flow direction vs. control signal

Shaft rotation	CW		ccw	
Coil energized [*]	C1	C2	C1	C2
Port A	in	out	out	in
Port B	out	in	in	out
Servo port pressurized	M5	M4	M5	M4

* For coil location see Installation drawings.

Control response

H1T controls are available with optional control passage orifices to assist in matching the rate of swashplate response to the application requirements (e.g. in the event of electrical failure).

The time required for the pump output flow to change from zero to full flow (acceleration) or full flow to zero (deceleration) is a net function of spool porting, orifices, and charge pressure.

A swash-plate response times table is available for each frame size. Testing should be conducted to verify the proper orifice selection for the desired response. Typical response times at the following conditions:

 Δ p = 250 bar [3626 psi] Charge pressure = 20 bar [290 psi] Viscosity and temperature = 30 mm²/s [141 SUS] and 50 °C [122 °F] Speed = 1800 min⁻¹ (rpm)

Response Time, NFPE

Stroking direction	Size combo	0.8 [0.03] orifice	1.3 [0.05] orifice	No orifice
Neutral to full flow	045/053	2.2 s	1.2 s	0.8 s
	060/068	3.3 s	1.6 s	1.0 s
Full flow to neutral	045/053	1.5 s	0.7 s	0.4 s
	060/068	1.9 s	0.8 s	0.4 s

Manual Override (MOR)

All controls are available with a manual override functionality, either as a standard or as an option for temporary actuation of the control to aid in diagnostics.

Control with manual override

MOR schematic (EDC control shown)

Feedback from swash plate.

The MOR plunger has a 4 mm diameter and must be manually depressed to be engaged. Depressing the plunger mechanically moves the control spool which allows the pump to go on stroke. The MOR should be engaged anticipating a full stroke response from the pump.

An o-ring seal is used to seal the MOR plunger where initial actuation of the function will require a force of 45 N to engage the plunger. Additional actuation typically require less force to engage the MOR plunger.

Proportional control of the pump using the MOR should not be expected.

Warning

Unintended MOR operation will cause the pump to go into stroke; *example*: vehicle lifted off the ground. The vehicle or device must always be in a safe condition when using the MOR function.

Refer to control flow table for the relationship of solenoid to direction of flow.

Swashplate angle sensor for EDC controls

The angle sensor detects the swash plate position with an accuracy dependent upon the calibration effort done for the application and direction of rotation from the neutral position. At minimum the sensor can be used for forward, neutral and reverse (FNR) detection.

The sensor works on the hall-effect technology. The implemented technology is based on a measurement of the magnetic field direction in parallel to the chip surface. This field direction is converted to a voltage signal at the output.

Enhanced calibration of the non-linear behavior leads to more exact calculation of the pump swashplate angle. The 4-pin DEUTSCH connector is part of the sensor housing. The swashplate angle sensor is available for all EDC controls for 12 V and 24 V.

Swashplate angle vs. output of supply voltage

A Warning

Strong magnetic fields in the proximity of the sensor can influence the sensor signal and must be avoided.

Contact your Danfoss representative in case the angle sensor will be used for safety functions.

Swash plate angle sensor parameters (EDC)

Parameter	Minimum	Typical	Maximum
Supply voltage range	4.5 V _{DC}	5 V _{DC}	5.5 V _{DC}
Supply protection	-	-	18 V _{DC}
Pump neutral output (% of supply voltage)	-	50%	-
Working range (swash plate angle)	-18°	-	18°
Required supply current	-	-	30 mA
Output current signal	-	9 mA	11 mA
Working temperature	–40 °C	80 °C	115 °C

Electrical Protection	Standard	Class
IP Rating	IEC 60 529	IP 67
	DIN 40 050, part 9	IP 69K with mating connector
EMC Immunity	ISO 11452-2	100 V/m

Calibration of the sensor output within the software is mandatory. Vehicle neutral thresholds in the software ($\pm 0.5^{\circ}$) are vehicle dependent and must consider different conditions, example: system temperature, system pressure and/or shaft speed.

For safety function: If the sensor fails (invalid signal <10% or >90% of supply voltage), it must be sure that the ECU will go into a diagnostic mode and shift into limited mode in order for the driver to take the full control or the mechanical breaks should be activated. Strong magnetic fields in the proximity of the sensor can influence the sensor signal and must be avoided.

Swash plate angle sensor connector

Connector DEUTSCH, 4-pin

Pin assignment:

1. Ground (GND)

2. Not connected

- **3.** Output signal 1 (SIG 1) **4.** Supply (V+)
- **4.** Supply (v+)

Connector order numbers

Description	Quantity	Order number
Mating connector DEUTSCH DTM06-4S-E004	1	11105824
Wedge lock WM-4S	1	not available
Socket contact 0462-201-2031	3	
Mating connector kit	1	11212713

Interface with ECU (EDC)

Interface with ECU diagram

Danfoss

Swash Plate Angle Sensor for NFPE and AC2 Controls

The angle sensor detects the swash plate angle position and direction of rotation from the zero position. The swash angle sensor works on the AMR sensing technology. Under the saturated magnetic field, the resistance of the element varies with the magnetic field direction.

The output signal give a linear output voltage for the various magnet positions in the sensing range.

Swash plate angle vs. output voltage

Parameter	Minimum	Typical	Maximum
Supply voltage range	4.75 V	5 V	5.25 V
Supply protection	-	-	28 V
Supply current	-	22 mA	25 mA
Output current (Signal 1, 2)	-	0.1 mA	-
Short circuit output current to supply or GND ¹⁾	-	-	7.5 mA
Sensitivity	70.0 mV/deg	78.0 mV/deg	85.8 mV/deg

Parameter	Minimum	Typical	Maximum
Working range (swash plate angle)	-18°	0°	18°
Correlation between signals 1 and 2 ²⁾	475 mV	500 mV	525 mV

¹⁾ Up to duration of 2.5 seconds at 25°C

²⁾ Signal 1 (nominal) is lower than signal 2 (redundant)

Swash-plate Angle Sensor Connector (NFPE/AC2)

Connector DEUTSCH, 4-pin

Pin assignment:

1. Ground (GND) **2**. Output Signal 2

2. Output Signal 2 (SIG2) – Secondary (redundant)

3. Output signal 1 (SIG 1)

4. Supply (V+)

Connector order numbers

Description	Quantity	Order number
Mating connector DEUTSCH DTM06-4S-E004	1	11105824
Wedge lock W4S	1	11084558
Socket contact DEUTSCH 0462-201-16141 (16–18 AWG)	2	K02325

Interface with ECU (NFPE)

Minimum recommended load resistance is $100 \text{ k}\Omega$.

Control-Cut-Off (CCO) and Brake Release Valves

The H1 tandem pumps offer an optional **Control-Cut-Off** valve integrated into the pump center section and a separate brake release valve allowing the controls to be activated before activating any auxiliary functions.

The CCO valve shunts charge pressure from the pump controls allowing the servo springs to de-stroke both pumps. The valve is normally open for fail-safe operation. The solenoid must be energized for the pump to operate. When the machine control circuits energize the CCO solenoid, it connects charge supply from the charge gallery to the pump controls.

The 045/053 tandem also supplies charge pressure to the port X7 for auxiliary operation of devices such as spring applied/pressure released brakes. The control cut off valve also shunts pressure away from port X7.

The 060/068 tandem offers a separate brake release valve that operates independently of the CCO valve allowing the controls to be activated before activating any auxiliary functions. When the 60/68 brake valve is deactivated the X7 port shunts to case.

045/053 Tandem

060/068 Tandem

Solenoid data

Description		12 V	24 V
Minimum supply voltage		9 V _{DC}	18 V _{DC}
Maximum supply voltage (continuous)		16 V _{DC}	32 V _{DC}
IP Rating	IEC 60 529	IP 67	
	DIN 40 050, part 9	IP 69K with mating connector	
Pin connector		any order	

For additional information, please contact Danfoss.

Displacement Limiter

H1 pumps are designed with optional mechanical displacement (stroke) limiters factory set to max. displacement. The maximum displacement of the pump can be set independently for forward and reverse using the two adjustment screws to mechanically limit the travel of the servo piston down to 50% displacement.

Adjustments under operating conditions may cause leakage. The adjustment screw can be completely removed from the threaded bore if backed out to far.

P003 266

Displacement change (approximately)

Parameter	Size 045	Size 053	Size 060	Size 068
1 Turn of displacement limiter screw	5.1 cm ³ [0.31 in ³]	6.0 cm ³ [0.37 in ³]	5.9 cm ³ [0.36 in ³]	6.6 cm ³ [0.40 in ³]
Internal wrench size	4 mm			
External wrench size	13 mm			
Torque for external hex seal lock nut	23 N•m [204 lbf•in]			

For more information, see *H1 Axial Piston Pumps, Service Manual*, **AX152886482551**, the section "Displacement Limiter Adjustment".

Port Locations

Port Locations H1T 045/053 Tandem

Mounting flange, shaft and connector surfaces to be paint free.

Ports description, ISO 11926-1

Ports	Description	Sizes
A, B, C, D	System ports: A, B, C and D; Ø48.5 max. clearance for fitting	1 ⁵ / ₁₆ –12
MA, MB, MC, MD	System gauge ports A, B, C and D; Ø28 max. clearance for fitting	⁹ / ₁₆ – 18
E	Charge filtration inlet port from filter; Ø36 max. clearance for fitting	⁷ / ₈ -14
L3	Case drain port; Ø48.5 max. clearance for fitting	1 ¹ / ₁₆ –12
M3	Charge gauge / constr. port; Ø28 max. clearance for fitting	⁹ / ₁₆ – 18
M4, M5	Servo gauge ports; Ø24.5 max. clearance for fitting	⁷ / ₁₆ – 20
M14	Case gauge port; Ø21 max. clearance for fitting (EDC, MDC, FNR, NFPE)	⁷ / ₁₆ – 20
AM3	Alternate charge pressure port	⁹ ∕ ₁₆ −18

Port Locations

Port Locations H1T 045/053 Tandem

Mounting flange, shaft and connector surfaces to be paint free.

Ports description, ISO 11926-1

Ports	Description	Sizes
MA, MB, MC, MD	System gauge ports A, B, C and D; Ø28 max. clearance for fitting	⁹ ∕ ₁₆ − 18
M3, Mx	Charge gauge / constr. port; Ø28 max. clearance for fitting	% ₁₆ – 18
M4, M5	Servo gauge ports; Ø24.5 max. clearance for fitting	⁷ / ₁₆ – 20
M14	Case gauge port; Ø21 max. clearance for fitting (EDC, MDC, FNR, NFPE)	⁷ / ₁₆ – 20

Please contact Danfoss representative for specific installation drawings.

Port Locations

Port Locations H1T 060/068 Tandem

Ports description, ISO 11926-1

Ports	Description	Size
A, B, C, D	System ports: A, B, C and D	Split flange, M12 x 1.75
MA, MB, MC, MD	System gauge ports A, B, C and D	⁹ / ₁₆ – 18
E	Charge filtration inlet port from filter	1 ¹ / ₁₆ -12
L1, L3	Case drain port	1 ⁵ / ₁₆ –12
M3, Mx	Charge gauge / constr. port	⁹ / ₁₆ – 18
M4, M5	Servo gauge ports	⁷ / ₁₆ – 20
M14	Case gauge port; (EDC, MDC, FNR, NFPE)	⁷ / ₁₆ – 20
AM3	Alternate charge pressure port	⁹ / ₁₆ – 18

Dimensions

Dimensions H1T 045/053 Tandem

Please contact Danfoss representative for specific installation drawings.

Dimensions

Notes in the drawing:

- \boldsymbol{a} Approximate center of gravity
- **b** Lifting holes weight limit not to exeed 75 kg [165 lb]

Please contact Danfoss representative for specific installation drawings.

Mounting bolt holes are sized for 14 mm fasteners. M12 or ½ inch can be used, but require a hardened washer.

Dimensions H1T 060/068 Tandem

Input shaft, option G1 (SAE C, 14 teeth) (045/053/060/068)

Specifications

Option		G1	
Spline		14 teeth, 12/24 pitch	
Min. active spline length ¹⁾		30.6 mm [1.205 in]	
Torque rating ²⁾ Rated		534 N•m [4720 lbf•in]	
Maximum		592 N•m [5240 lbf•in]	

¹⁾ Minimum active spline length for the specified torque ratings.

Input shaft, option G5 (SAE B-B, 15 teeth) (045/053 only)

Specifications

Option		G5	
Spline		15 teeth, 16/32 pitch	
Min. active spline length ¹⁾		22 mm [0.866 in]	
Torque rating ²⁾ Rated		277 N•m [2450 lbf•in]	
Maximum		370 N•m [3270 lbf•in]	

¹⁾ Minimum active spline length for the specified torque ratings.

Input shaft, option G6, (19 teeth-long) (045/053 only)

Specifications

Option		G6	
Spline		19 teeth, 16/32 pitch	
Min. active spline length ¹⁾		34.8 mm [1.370 in]	
Torque rating ²⁾	Rated	563 N•m [4980 lbf•in]	
	Maximum	732 N•m [6478 lbf•in]	

¹⁾ Minimum active spline length for the specified torque ratings.

Input shaft, option F1, (060/068 only)

Option F1, ISO 3019-1, outer dia 32 mm-4 (SAE C, 21 teeth)

Specifications

Option		F1	
Spline		21 teeth, 16/32 pitch	
Min. active spline length ¹⁾		31.5 mm [1.358 in]	
Torque rating ²⁾ Rated		760 N•m [6730 lb•in]	
Maximum		1137 N•m [10060 lb•in]	

¹⁾ Minimum active spline length for the specified torque ratings.

Auxiliary mounting pads

Option H2 (SAE A, 9 teeth) 045/053

Option H2, ISO 3019-1, flange 82-2 (SAE A, 9 teeth)

Specifications

Option	H2
Spline	9 teeth, 16/32 pitch
Maximum torque ¹⁾	162 N•m [1430 lbf•in]

¹⁾ For definitions of maximum and rated torque values, refer to *Basic Information* **BC152886483968**, section Shaft Torque Ratings and Spline Lubrication.

Caution

Option H1 (SAE A, 11 teeth) 045/053

Specifications

Option	H1	
Spline	11 teeth, 16/32 pitch	
Maximum torque ¹⁾	296 N·m [2620 lbf·in]	

¹⁾ For definitions of maximum and rated torque values, refer to *Basic Information* **BC152886483968**, section Shaft Torque Ratings and Spline Lubrication.

Caution

Option H3 (SAE B, 13 teeth) 045/053

Option H3, ISO 3019-1, Flange 101-2 (SAE B, 13 Teeth)

Specifications

Option	Нз
Spline	13 teeth, 16/32 pitch
Maximum torque ¹⁾	395 N•m [3500 lbf•in]

¹⁾ For definitions of maximum and rated torque values, refer to *Basic Information* **BC152886483968**, section Shaft Torque Ratings and Spline Lubrication.

D Caution

Option H3 (SAE B, 13 teeth) 060/068

Option H3, ISO 3019-1, Flange 101-2 (SAE B, 13 Teeth)

P109521

Specifications

Option	H3	
Spline	13 teeth, 16/32 pitch	
Maximum torque ¹⁾	395 N•m [3500 lbf•in]	

Option H5 (SAE B-B, 15 teeth) 045/053

Option H5, ISO 3019-1, Flange 101-2 (SAE B-B, 15 Teeth)

Specifications

Option	H5
Spline	15 teeth, 16/32 pitch
Maximum torque ¹⁾	405 N•m [3580 lbf•in]

¹⁾ For definitions of maximum and rated torque values, refer to *Basic Information* **BC152886483968**, section Shaft Torque Ratings and Spline Lubrication.

Caution

Option H5 (SAE B-B, 15 teeth) 060/068

Option H5, ISO 3019-1, Flange 101-2 (SAE B-B, 15 Teeth)

Specifications

Option	H5	
Spline	15 teeth, 16/32 pitch	
Maximum torque ¹⁾	592 N•m [5240 lbf•in]	

¹⁾ For definitions of maximum and rated torque values, refer to *Basic Information* **BC152886483968**, section Shaft Torque Ratings and Spline Lubrication.

Caution

060/068 Control dimensions

Electric Displacement Control (EDC), option A2 (12V) / A3 (24V) (060/068)

2x Case gauge port **M14:** ISO 11926-1 – 7/16 -20; Ø21.0 max clearance dia for fitting 4x Connectors Deutsch DT04-2P to be paint free

Manual Displacement Control (MDC), option M1 (060/068)

Forward-Neutral-Reverse (FNR) with MOR, option A9 (12 V)/ B1 (24 V) (060/068)

2x Case gauge port **M14:** ISO 11926-1; $7/_{16}$ -20; Ø21.0 max clearance dia for fitting. 4x Connectors Deutsch DT04-2P to be paint free.

045/053 Control dimensions

Electric Displacement Control (EDC), option A2 (12V) / A3 (24V) H1T (045/053)

2x Case gauge port M14: ISO 11926-1 – 7/16 -20; Ø21.0 max clearance dia for fitting

4x Connectors Deutsch DT04-2P to be paint free

Electric Displacement Control (EDC) with MOR, option A4 (12 V) / A5 (24 V) H1T (045/053)

2x Case gauge port M14: ISO 11926-1 – 7/16 -20; Ø21.0 max clearance dia for fitting

4x Connectors Deutsch DT04-2P to be paint free

Manual Displacement Control (MDC), option M1, H1T (045/053)

Manual Displacement Control (MDC) with NSS, option M2, H1T (045/053)

H1 Tandem 045/053 Manual Displacement Control (MDC) with NSS, option M2

Neutral Start Switch connector:

Pin	Assignment		Pin	Assignment
1	Supply	OR	1	Ground
2	Ground		2	Supply

Manual Displacement Control (MDC) with NSS, option D9, H1T (045/053)

H1 Tandem 045/053 Manual Displacement Control (MDC) with NSS, option D9

Neutral Start Switch connector:

Pin	Assignment		Pin	Assignment
1	Supply	OR	1	Ground
2	Ground		2	Supply

Forward-Neutral-Reverse (FNR) with MOR, option A9 (12 V) / B1 (24 V) H1T (045/053)

2x Case gauge port **M14:** ISO 11926-1; $\frac{7}{16}$ -20; Ø21.0 max clearance dia for fitting. 4x Connectors Deutsch DT04-2P to be paint free.

Center section coupling, torque rating

Torque rating for center section coupling

P003 203E

Maximum torque for center coupling

Model	Max. torque
045/053	405 N•m [3580 lbf•in]
060/068	592 N•m [5040 lbf•in]

Control Cut Off (CCO)

045/053 CCO

Mounting flange, shaft and connector surfaces to be paint free.

Ports description, ISO 11926-1

Ports	Description	
МВ, МС	System gauge ports B , C ; Ø28 max. clearance for fitting 9_{16}^{-1}	
AM3	Charge constr. port; Ø28 max. clearance for fitting	⁹ ⁄ ₁₆ – 18
X7	Brake gauge port 9/1	
М3	Charge Gauge Port	⁹ ⁄ ₁₆ –18

060/068 CCO

Mounting flange, shaft and connector surfaces to be paint free.

Ports description, ISO 11926-1

Ports	Description	Size
A, B, C, D	System ports	Split flange, M12 x 1.75
MA, MD	System gauge ports A, D	⁹ / ₁₆ – 18
E	Charge inlet port	1 ¹ / ₁₆ – 12
X7	Brake gauge port	³ / ₄ –16
M3	Charge Gauge Port	⁹ ⁄ ₁₆ –18

Displacement limiter, H1 Tandem, option B

045/053 shown

P109539

	Description	Wrench size	Torque
1	Seal nut	13 mm external hex	23 Nm [17 lbf•ft]
2	Adjustment screw	4 mm internal hex	-

Dimensions

	045/053	060/068
A	277.4 ± 1.2	314 ± 1.2
В	106.2 ± 0.8	120 ± 1.2
С	74.4 ± 0.8	79.5 ± 0.8
D	(116.1)	128.2

Products we offer:

- Cartridge valves
- DCV directional control valves
- Electric converters
- Electric machines
- Electric motors
- Gear motors
- Gear pumps
- Hydraulic integrated circuits (HICs)
- Hydrostatic motors
- Hydrostatic pumps
- Orbital motors
- PLUS+1[®] controllers
- PLUS+1[®] displays
- PLUS+1[®] joysticks and pedals
- PLUS+1[®] operator interfaces
- PLUS+1[®] sensors
- PLUS+1[®] software
- PLUS+1[®] software services, support and training
- Position controls and sensors
- PVG proportional valves
- Steering components and systems
- Telematics

Hydro-Gear

www.hydro-gear.com

Daikin-Sauer-Danfoss

www.daikin-sauer-danfoss.com

Danfoss Power Solutions is a global manufacturer and supplier of high-quality hydraulic and electric components. We specialize in providing state-of-the-art technology and solutions that excel in the harsh operating conditions of the mobile off-highway market as well as the marine sector. Building on our extensive applications expertise, we work closely with you to ensure exceptional performance for a broad range of applications. We help you and other customers around the world speed up system development, reduce costs and bring vehicles and vessels to market faster.

Danfoss Power Solutions – your strongest partner in mobile hydraulics and mobile electrification.

Go to www.danfoss.com for further product information.

We offer you expert worldwide support for ensuring the best possible solutions for outstanding performance. And with an extensive network of Global Service Partners, we also provide you with comprehensive global service for all of our components.

Local address:

Danfoss Power Solutions (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239 6000 Danfoss Power Solutions GmbH & Co. OHG Krokamp 35 D-24539 Neumünster, Germany Phone: +49 4321 871 0 Danfoss Power Solutions ApS Nordborgvej 81 DK-6430 Nordborg, Denmark Phone: +45 7488 2222 Danfoss Power Solutions Trading (Shanghai) Co., Ltd. Building #22, No. 1000 Jin Hai Rd Jin Qiao, Pudong New District Shanghai, China 201206 Phone: +86 21 2080 6201

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.