

Technical Information

H1B 060/080/110/160/210/250 Bent Axis Motors

www.danfoss.com

Revision history

Table of revisions

Date	Changed	Rev
May 2020	Added DIN 250cc flange, changed document number from BC00000043	1213
December 2019	Updated model code section and corrected speed sensor pinout information.	1111
July 2019	Document Title and reference to STS TI.	1110
May 2019	Minor update.	1109
March 2018	Model code and ports update.	1108
February 2018	Model code update.	1107
December 2017	PWM data change.	1106
November 2017	Note for speed sensor added.	1105
April 2017	Dimensions table correction.	1104
December 2016	KHKH control correction.	1103
August 2016	DIN, Cartridge flange measures corrections.	
July 2016	Major update. New hydraulic controls added.	1101
May 2008- July 2016	Various updates, new sizes, Converted to Danfoss, DITA CMS.	0101-1001

Contents

General information		
	Design of H1 bent axis motor	6
	General description	
	The H1 range of products	
	H1 pictorial diagram	9
	H1 system schematic	
T b b b		
Technical specifications	Concrel and ifications	11
	General specifications	
	Physical properties	
	Operating Parameters	
	H1B speed range diagrams for open and closed circuit	
	Required inlet pressure diagrams (for cylinder block filling)	
	Required outlet pressure diagrams (minimum for short time usage)	
	Required low pressure diagrams (minimum for extended usage)	
	Open circuit requirements	
	Fluid specifications	
	Determination of nominal motor size	
Operation		
operation	Shaft rotation direction	
	Loop flushing shuttle spool	
	Loop flushing relief valve	
	Displacement limiter	
	Speed sensor	
	Temperature Range	
	Protection Characteristics	
	Mating Connectors	
	Available Sensors	
	Speed Sensor 4.5 – 8 V Technical Data	
	Speed Sensor 7 – 32 V Technical Data	
	Sensor position	
	Target Ring	
Operating parameters		
	Output speed	
	System pressure	
	Case pressure	27
	External shaft seal pressure	
	Temperature	
	Viscosity	
	-	
System design parameters		
	Filtration system	
	Reservoir	
	Fluid selection	
	Case drain	
	Independent braking system	
	Bearing loads and life	
	Shaft torque	
Master Model Code		
Muster Moder Code	Size, version, and port options	31
	Control options	
	•	
	PCOR and BPD options	
	Threshold setting and orifice options	
	Endcap, flange and housing options	
	Shaft, sensor, and loop flushing shuttle system options	
	Loop flushing and special hardware options	
	Minimum and maximum displacement options	
	PCOR pressure setting, paint and nametag options	

Contents

•	Electric controls	
	Electric proportional controls	
	Electric two-position controls	
	Servo supply	
	Control options	
	PCOR	
	Electric proportional with PCOR	
	Electric two-position with PCOR	
	Electric two-position with proportional PCOR	
	Hydraulic controls	
	Hydraulic proportional control	
	Hydraulic two-position control	
	Hydraulic proportional with PCOR	
	Hydraulic two-position with PCOR	
	Brake Pressure Defeat (BPD)	
	Electric BPD	
	Electric solenoid connector	
	Hydraulic BPD	
	H1B control response	
	Applications related to controls	
Electric proportional	and two-position controls	
	L1BA and L2BA options	
	D1MA and D2MA options with PCOR	
	D1M1 and D2M2 options with PCOR and electric BPD	50
	M1CA and M2CA options	
	K1KA and K2KA options with PCOR	54
	K1K1 and K2K2 options with PCOR and electric BPD	56
	E1AA and E2AA options	58
	F1EA and F2EA options	59
	T1DA and T2DA options with PCOR	60
	T1D1 and T2D2 options with PCOR and electric BPD	62
	T1G1 and T2G2 options with PCOR and electric BPD	64
	P1DA and P2DA options with PCOR	
	P1D1 and P2D2 options with PCOR and electric BPD	
	P1G1 and P2G2 options with PCOR and electric BPD	70
Hydraulic proportion	al and two-position controls	
	LHBA option	
	MHCA option	
	DHMA option with PCOR	
	DHMH option with PCOR and BPD	
	KHKA option with PCOR	
	KHKH option with PCOR and BPD	
	HEHE option	
	HFHF option	
	THHA option with PCOR	
	THHB option with PCOR and hydraulic BPD	
Pressure compensato	or over-ride and electric BPD	
· · · · · · · · · · · · · · · · · · ·	TADA option	80
	TAD1 and TAD2 options with electric BPD	
	TAG1 and TAG2 options while letter by Balance and the second se	
Flange and housing d		
	SAE flange design – option L* (proportional control)	
	SAE flange design – option M* (proportional control)	
	SAE flange design – options T* D* and P* D* (two-position control, PCOR, electric BPD)	97
	SAE flange design ports per ISO 11 926-1	
	SAE mounting flange design per ISO 3019/1	

	O-ring groove dimensions	
	DIN flange design – option L* (proportional control)	
	DIN flange design – option M* (proportional control)	
	DIN flange design – options T* D* and P* D* (two-position control, PCOR, electric BPD)	106
	DIN flange design ports per ISO 11 926-1	
	DIN mounting flange design per ISO 3019/2	109
	Cartridge flange design – option L* (proportional control)	111
	Cartridge flange design – option M* (proportional control)	
	Cartridge flange design – options T* D* and P* D* (two-position control, PCOR, electric BPD)	115
	Cartridge flange design ports per ISO 11 926-1	
	Cartridge mounting flange design	118
	H1B cartridge motors with speed sensor	
Control dimensions		
	Options L1BA and L2BA (Electric proportional control)	
	Option D*MA (Electric proportional control)	
	Option D*M* (Electric proportional control)	
	Options M1CA and M2CA (Electric proportional control)	
	Option K*KA (Electric proportional control)	
	Options K1K1 and K2K2 (Electric proportional control with PCOR and BPD)	
	Options E1AA and E2AA (Electric two-position control)	
	Options F1EA and F2EA (Electric two-position control)	
	Options T1DA, T2DA and P1DA, P2DA (Electric two-position controls with PCOR and electric	ric
	proportional PPCOR)	
	Options T1D1, T2D2 and P1D1, P2D2 (Electric two-position controls with PCOR, BPD and electric	
	proportional PPCOR, BPD)	
	Option LHBA (Hydraulic proportional control)	
	Option MHCA (Hydraulic proportional control)	
	Option DHMA (Hydraulic proportional control)	
	Option DHMH (Hydraulic proportional control)	
	Option HEHE (Hydraulic two-position control)	
	Option HFHF (Hydraulic two-position control)	
	Option THHA (Hydraulic two-position control)	
	Option THHB (Hydraulic two-position control)	
	Option TADA (Hydraulic two-position control)	
	Option TAD1 and TAD2 (Hydraulic two-position control)	144

Design of H1 bent axis motor

Cross-section of H1 motor with electric proportional control

- 1. Differential servo piston
- 2. Valve segment
- 3. Bearing plate
- 4. Tapered roller bearing
- 5. Loop flushing relief valve
- 6. Ramp spring
- 7. Loop flushing shuttle spool
- 8. Electric proportional control
- 9. Minimum displacement limiter
- 10. Speed ring (optional)

Cross-section of H1 motor with electric two-position control

- 1. Differential servo piston
- 2. Valve segment
- 3. Bearing plate
- **4.** Tapered roller bearing
- 5. Loop flushing relief valve
- 6. Loop flushing shuttle spool
- 7. Electric two-position control
- 8. Minimum displacement limiter
- 9. Speed ring (optional)

General description

Series H1 variable displacement motors are bent axis design, incorporating spherical pistons.

These motors are designed primarily to be combined with other products in closed circuit systems to transfer and control hydraulic power. Series H1 motors have a large maximum/minimum displacement ratio of 5:1 and high output speed capabilities.

The expanded function of zero degree capability, coupled with a high performance 32 degree maximum angle, creates opportunities to easily improve the machine performance for:

- Wheel assist on the steering axle of high inertia machines (i.e. combines) and could include Anti Slip Control
- Off-highway machines requiring Anti Slip Control (i.e. Ag. sprayer)
- Multi-motor applications requiring optimized work and transport modes (i.e. wheel loader, Ag sprayer) utilizing the zero degree position for maximum transport speed
- Improved machine (i.e. single drum roller) gradeability through precise Anti Slip Control

The Anti Slip Control reduces ground damage, increases traction control and improves machine controllability for the operator.

SAE, Cartridge (not available for 210 cm³ and 250 cm³) and DIN flange with radial or axial high pressure port configurations are available including the loop flushing device.

A complete family of controls and regulators are available to fulfill the requirements of a wide range of applications.

Motors normally start at maximum displacement. This provides maximum starting torque for high acceleration.

All controls utilize internally supplied servo pressure. This may be overridden by a pressure compensator which functions when the motor is operating in motor and pump modes. A defeat option is available to disable the pressure compensator override when the motor is running in pump mode during deceleration/braking.

The pressure compensator option features a low pressure rise to ensure optimal power utilization throughout the entire displacement range of the motor.

Speed sensor options are available to cover all frame sizes and flange styles.

They are capable of sensing the following, all in one package:

- Speed
- Direction (only group "J", option "S")
- Temperature (only group "J", option "S")

The electric controls are specifically designed for the Danfoss family of PLUS+1[®] microcontrollers for easy "Plug and Perform" installation.

The H1 range of products

A growing family based on the success of the Series 51 product family:

- Initial release of 060 cm³, 080 cm³, 110 cm³, 160 cm³, 210 cm³ and 250 cm³ displacement size.
- Development plans include additional displacement sizes.

H1 pictorial diagram

- Working loop A (Low pressure) and charge pressure
- Working loop B (High pressure)
- Servo pressure

- Case drain
- Suction
- 1. Bent Axis Variable Displacement Motor
- 2. Axial Piston Variable Displacement Pump
- 3. Electric Displacement Control (EDC)
- 4. Charge Pump
- 5. Charge Check / High Pressure Relief Valve
- 6. Loop Flushing Valve
- 7. Pressure Limiter Valve
- 8. Charge Pressure Relief Valve
- 9. Servo Cylinder

- 10. Charge Pressure Filter
- 11. Heat Exchanger
- 12. Heat Exchanger Bypass Valve
- 13. Valve Segment
- 14. Pump Swashplate
- 15. Input Shaft
- 16. Output Shaft
- 17. Reservoir
- 18. to Motor Case

H1 system schematic

System schematic H1 pump and H1 motor with EDC

The schematic above shows the function of a hydrostatic transmission using an H1 axial variable displacement pump with electric proportional displacement control (EDC) and an H1 bent axis variable displacement motor with electric proportional control (L*) and integrated loop flushing device.

General specifications

General specifications

Design	Piston motor with variable displacement bent axis design
Direction of rotation	Bi-directional
Pipe connections	Main pressure ports: ISO split flange boss Remaining ports: SAE straight thread O-ring boss
Recommended installation	Discretionary, the housing must always be filled with hydraulic fluid

Physical properties

Physical properties

Features	Features		Size					
reatures			060	080	110	160	210	250
Displacement	maximum	cm ³ [in ³]	60 [3.66]	80 [4.88]	110 [6.71]	160 [9.76]	210 [12.81]	250 [15.25]
Displacement	minimum	cm- [m-]	12 [0.73]	16 [0.98]	22 [1.34]	32 [1.95]	42 [2.56]	50 [3.05]
Theoretical flow at	at rated speed	l/min	216 [57]	256 [68]	319 [84]	416 [110]	504 [133]	550 [145]
max. displ.	max. displ. at max. speed	[US gal/min]	270 [71]	328 [87]	407 [108]	528 [139]	630 [166]	700 [185]
Theoretical torque at max. displacement		N•m/bar [lb•in/1000 psi]	0.96 [583]	1.27 [777]	1.75 [1069]	2.55 [1555]	3.34 [2038]	3.98 [2426]
•	Theor. corner power at rated speed and max. working pressure ($\Delta p = 450$ bar [6527 psi])		266 [357]	321 [430]	396 [531]	513 [689]	609 [817]	684 [917]
Mass moment of inertia of rotating components		kg•m ² [slug•ft ²]	0.0038 [0.0028]	0.0062 [0.0046]	0.0108 [0.0080]	0.0211 [0.0156]	0.0306 [0.0226]	0.0402 [0.0296]
Case volume		l [US gal]	0.9 [0.24]	1.0 [0.26]	1.4 [0.37]	2.7 [0.71]	2.8 [0.74]	4.1 [1.08]

Weight dry (Electric proportional control)

Configuration	Size					
	060	080	110	160	210	250
SAE	29.8 kg [65.7 lb]	34.8 kg [76.7 lb]	48.8 kg [107.6 lb]	61.9 kg [136.5 lb]	81.0 kg [179 lb]	87.0 kg [196.2 lb]
DIN	28.3 kg [62.4 lb]	34.4 kg [75.8 lb]	45.0 kg [99.2 lb]	59.3 kg [130.7 lb]	75.0 kg [165 lb]	79.6 kg [175.5 lb]
Cartridge	26.9 kg [59.3 lb]	33.0 kg [72.6 lb]	41.8 kg [92.2 lb]	54.7 kg [120.6 lb]	-	-

Mounting flange

Configuration	Size					
	060	080	110	160	210	250
SAE ISO 3019/1	127-4 (SAE C) 4-bolt		152-4 (SAE-D) 4-bolt		165-4	(SAE E)
DIN ISO 3019/2, B4	125 HL 4-bolt	140 HL 4-bolt	160 HL 4-bolt	180 HL 4-bolt	200 HL 4-bolt	200 HL 4-bolt
Cartridge	Pilot Ø160 mm 2-bolt (200 dist.) M16	Pilot Ø190 mm 2-bolt (224 dist.) M20	Pilot Ø200 mm 2-bolt (250 dist.) M20		-	-

Customer ports

Size	060	080	110	160	210	250				
Axial and radial ¹⁾	DN19 typ 1	DN25 typ 1	DN25 typ 1	DN32 typ 1	DN32 typ 1	DN32 typ 1				
Case drain ports ²⁾	0.875 [7/8]–1	4UN-2B 1.0625 [1 ¹ / ₁₆]-12UN-2B 1.313 [1 ⁵ / ₁₆]-				0.875 [⁷ / ₈]–14UN-2B 1.0625 [1 ¹ / ₁₆]–12UN-2B		0.875 [⁷ / ₈]–14UN-2B 1.0625 [1 ¹ / ₁₆]–12UN-2B 1.313 [1 ⁵ / ₁₆]–12U]–12UN-2B]
Axial gauge ports ²⁾³⁾	0.875 [⁷ ⁄ ₈]–14UN-2B	1.0625 [1 ¹ / ₁₆]–12UN-2B								
Radial gauge port ²⁾³⁾		0.5625 [% ₁₆]–18UNF-2B								

¹⁾ Split flange Boss per ISO6162, 40 MPa series

²⁾ SAE O-ring boss

³⁾ Countersink may be deeper that specified in the standard.

Operating Parameters

Output Speed

Output Speed	Displacement	Unit	Size					
Output speed	Displacement	Onit	060	080	110	160	210	250
	Maximum 32°		3600	3200	2900	2600	2350	2200
Rated	Minimum 6°	min ⁻¹ (rpm)	5900	5300	4800	4250	3850	3650
	Zero 0°		6600	5950	5350	4750	4300	4050
	Maximum 32°		4500	4100	3700	3300	3000	2800
Maximum	Minimum 6°		7250	6600	5950	5250	4800	4500
	Zero 0°		7950	7200	6500	5750	5250	4900

System and Case Pressure, Ambient Temperature

Parameter	All sizes	
System pressure	Maximum working	450 bar [6527 psi]
	Maximum	480 bar [6962 psi]
	Minimum ¹⁾	2)
Case pressure	Rated	3 bar [44 psi]
	Maximum	5 bar [73 psi]
	Minimum	0.3 bar [4 psi]
Ambient temperature ³⁾	Maximum	70 °C [158 °F]
	Minimum	-40 °C [-40 °F]

¹⁾ Minimum above case pressure (**open** and **closed** circuit)

²⁾ See the graphs *Required inlet pressure diagrams (for cylinder block filling)* on page 14.

³⁾ Air temperature close to the unit.

H1B speed range diagrams for open and closed circuit

Speed (rpm) versus Displacement (%), Intermittent operation (grey area)

A Warning

Zero degree capability results in a high risk of overspeed and drops in efficiency if the motor operates between 0–20% displacement.

For **open circuit** applications it is not allowed to operate in the intermitent area. For **closed circuit** applications operating in the intermittent area, please contact your local Danfoss Power Solutions representative.

Required inlet pressure diagrams (for cylinder block filling)

Speed (rpm) and Pressure (bar) versus Displacement (%)

Speed (rpm) and Pressure (bar) versus Displacement (%)

Speed (rpm) and Pressure (bar) versus Displacement (%)

Bold dashed line: Maximum speed

Bold solid line: Rated speed

This pressure ensures that the cylinder block will be properly filled and that there is no pulling between piston and shaft.

The required pressure is 0 bar at 0 rpm and increases with rpm.

For **open circuit** applications it is not allowed to operate above rated speed. For **closed circuit** applications operating between rated and max. speed, please contact your local Danfoss Power Solutions representative.

Required outlet pressure diagrams (minimum for short time usage)

Speed (rpm) and Pressure (bar) versus Displacement (%)

Speed (rpm) and Pressure (bar) versus Displacement (%)

Speed (rpm) and Pressure (bar) versus Displacement (%)

3000 2000 2000 1000 0,0% 20% 4 bar 3 bar 2 bar 2 bar 0,0% 20% 40% 60% 80% 100% P06 021

Bold dashed line: Maximum speed / Bold solid line: Rated speed

The required outlet pressure (above case pressure) makes sure, that there is no pulling between piston and shaft.

The required pressure is 0 bar at 0 rpm and increases with rpm.

For **open circuit** applications it is not allowed to operate above rated speed. For **closed circuit** applications operating between rated and max. speed, please contact your local Danfoss Power Solutions representative.

Required low pressure diagrams (minimum for extended usage)

Speed (rpm) and Pressure (bar) versus Displacement (%)

Bold dashed line: Maximum speed / Bold solid line: Rated speed

These minimum pressures are required for a high duty cycle, defined as 200 hours at 350 bar. Similarly, a duty cycle of 200 hours at 250 bar requires 50% of these pressures.

This low pressure (above case pressure) is required to prevent cavitation, which comes from the pressure change in the cylinder block. There is very high flow velocity in the porting grooves of the valve segment, which causes cavitation.

For **open circuit** applications it is not allowed to operate above rated speed. For **closed circuit** applications operating between rated and max speed, and for specific duty cycle interpretation or analysis, please contact your local Danfoss Power Solutions representative.

Open circuit requirements

H1 Bent Axis Motors may be used in **O**pen **C**ircuit (OC) applications.

Since loop flushing is typically not used in OC-applications it is essential to provide sufficient cooling capacity. This can be done by motor case cross flushing.

The flow rate needs to be adjusted to the cooling demand.

The highest case drain outlet port must always be used for the return flow to the cooler or tank.

The motor case, the control system and the working lines connected to Port A and B must be kept full of oil at all times, whether in a dynamic or static condition.

The plumbing must not allow the oil to drain down and be replaced with air in the control or rotating group.

The minimum pressure in the inlet port and the outlet port, measured at gage ports MA and MB, must be equal or higher as shown in the graphs *Required inlet pressure diagrams (for cylinder block filling)* on page 14.

Counter balance valves may be used to maintain the minimum pressure requirements. Also the Danfoss Power Solutions Meter-in / Meter-out PVG technology may be used.

Check valves and sufficient charge pressure supply are also possible.

At no time shall the motor be allowed to operate above the rated speed limits. If flow limiter valves are used, they must be selected accordingly. Select Motor controls which use the high loop system pressure to shift the servo piston. This will ensure proper function under all conditions.

Valve blocks, such as counter balance valves attached to the inlet and/or outlet ports, must not interfere with any part of the motor. A review of the outline drawings or appropriate 3D models must be completed.

Fluid specifications

Features		Unit	All sizes
	Minimum intermittent	_	7 [49]
Viscosity	Recommended range	mm²/s [SUS]	12-80 [66-366]
	Maximum intermittent		1600 [7416]
Temperature range ¹⁾²⁾	Minimum		-40 [-40]
	Rated	°C [°F]	104 [220]
	Maximum intermittent		115 [240]
	Required cleanliness per ISO 4406	-	22/18/13
Cleanliness and Filtration	Efficiency (charge pressure filtration)	β-ratio	$\beta_{15-20} = 75 \ (\beta_{10} \ge 10)$
	Efficiency (suction / return line filtration)	p-ratio	$\beta_{35\text{-}45} = 75 \; (\beta_{10} \geq 2)$
	Recommended inlet screen mesh size	μm	100 – 125

Fluid specifications

¹⁾ At the hottest point, normally case drain port.

²⁾ Minimum: cold start, short term t<3 min, p<50 bar, n<1000 rpm.

Danfoss

Determination of nominal motor size

Based on SI units

High pressure (bar) Phigh **p**low Low pressure (bar)

- High pressure minus Low pressure (bar) Δр
- Motor volumetric efficiency ην
- Mechanical-hydraulic efficiency η_{mh}
- Motor total efficiency ($\eta_v \cdot \eta_{mh}$) ηt

Based on US units

$$D_{e} = \frac{V_{g} \cdot n}{231 \cdot \eta_{v}}$$
$$D_{e} = \frac{V_{g} \cdot \Delta p \cdot \eta_{mh}}{2 \cdot \pi}$$
$$D_{e} = \frac{V_{g} \cdot n \cdot \Delta p \cdot \eta_{t}}{396\,000}$$

$$n = \frac{Q_e \cdot 231 \cdot \eta_v}{V_g}$$

Q_e	Input flow [US gal/min]
Me	Output torque [lb•in]
Pe	Output power [hp]
n	Speed [rpm]
Vg	Motor displacement per rev. [in ³ /rev]
P high	High pressure [psi]
p low	Low pressure [psi]
Δр	High pressure minus Low pressure [psi]
η _v	Motor volumetric efficiency
η _{mh}	Mechanical-hydraulic efficiency
η _t	Motor total efficiency $(\eta_v \cdot \eta_{mh})$

Shaft rotation direction

Shaft rotation direction is determined with a view from the shaft end.

Rotation direction of the motor will be dependent on the control option used as illustrated below.

In the second number or letter of the control code, 1 means 12 V_{DC} , 2 means 24 V_{DC} , and H means hydraulic.

Controls L1, L2, D1, D2, LH, DH

Flow into port A

Flow into port B

Controls M1, M2, K1, K2, KH, MH

Clockwise

Counterclockwise

Flow into port A Flow into port B

Counterclockwise Clockwise

Controls E1, E2, F1, F2, P1, P2, T1, T2, TA, TH, HE, HF

Flow into port A Flow into port B

Counterclockwise

Clockwise

Loop flushing shuttle spool

An integral loop flushing shuttle spool is used to separate system A and system B pressures.

System delta pressure will cause the shuttle spool to shift, allowing the low side system pressure to flow to the loop flushing relief valve.

P003 437

A Warning

Unintended vehicle or machine movement hazard.

Excessive motor loop flushing flow may result in the inability to build required system pressure in some conditions. Maintain correct charge pressure under all conditions of operation to maintain pump control performance in hydrostatic systems.

Loop flushing relief valve

The loop flushing relief valve is incorporated into all H1 motors and uses the loop flushing option in installations that require fluid to be removed from the low pressure side of the system circuit due to cooling requirements.

The loop flushing relief valve is also used to facilitate the removal of contaminants from the loop.

The loop flushing valve is equipped with an orificed charge pressure relief valve designed with a cracking pressure of 16 bar [232 psi].

Valves are available with several orifice sizes to meet the flushing flow requirements of all system operating conditions.

Loop flushing relief valve (cross section)

Loop flushing relief valve schematic

Loop flushing relief valve sizes

- **X** Loop flushing flow (l/min)
- Y Low system pressure minus case pressure (bar)

Displacement limiter

All Series H1 motors incorporate mechanical displacement limiters.

The minimum displacement of the motor is preset at the factory with a set screw in the motor housing. A tamper-proof cap is provided.

For 0° motors, the minimum displacement screw can be substituted with a plug that uses less space.

Speed sensor

The speed sensor is designed for rugged outdoor, mobile or heavy industrial speed sensing applications. The detection of the speed is contactless and does not need any calibration or adjustments.

For more information, see Speed and Temperature Sensor, Technical Information, BC152886482203.

Temperature Range

Parameter	Minimum	Maximum
Operation temperature range	-40 °C	104 °C

115°C Intermittent = Short term; t < 1min per incident and not exceeding 2 % of duty cycle based load-life.

Protection Characteristics

Parameter	Data
Protection Code (IP class) according IEC 60529 and DIN 40050	IP 67 (without connector installed) IP 69k (with connector installed)
EMC Emission	EN 61000-6-3
EMC Immunity (EMI)	100 V/m incl. 1 kHz AM 80 %; ISO 11452-5 and -2
ESD	EN 61000-4-2 Air discharge: 15 kV Contact discharge: 8 kV
Vibration	30 G (294 m/s ²)
Shock	50 G (490 m/s ²)
Case maximum pressure	5 bar [72.5 psi]

Mating Connectors

There are available two types of mating connectors Assembly Bag DEUTSCH DTM06-6S, Black and Grey.

Ordering number			
11033865	11033863		
Assembly Bag, DEUTSCH DTM06-6S-E004; black, (24-20 AWG) 0.21 -0.52 mm ²	Assembly Bag, DEUTSCH DTM06-6S, gray, (24-20 AWG) 0.21 -0.52 mm ²		

Available Sensors

There are two speed sensors available according to different supply voltage range: 4.5 to 8 V_{DC} and 7 to 32 $V_{DC}.$

Description	Order number		
	149055	11102032	
Supply voltage	4.5 – 8 V	7 – 32 V	
Speed signals	Two, 90° Phase shift	One	
Direction signal	One	-	
Temperature signal	One	-	

For more information, see *Speed Sensor 4.5 – 8 V Technical Data* and *Speed Sensor 7 – 32 V Technical Data* on page 24.

Speed Sensor 4.5 – 8 V Technical Data

Speed sensor connector, 6-pin

- Speed signal 2
 Direction signal
- Speed signal 1
 Supply
- 5. Ground
- 6. Temperature

Technical data

Parameter	Min.	Nom.	Max.	Note
Supply voltage	4.5 V _{DC}	5 V _{DC}	8 V _{DC}	Regulated supply voltage. Reverse polarity protected.
Supply protection	-	-	30 V _{DC}	Shuts off above 9 V.
Max. required supply current	-	-	25 mA	At supply voltage
Max. output current	-	-	50 mA	
Operation mode	NPN & PNP		Push-Pull amplifier	
Temperature signal	-40°C = 2.318V	-	100°C = 0.675V	
Output low speed signal	5 %	8.5 %	12 %	Ratiometric output voltage Low state > 0 V to provide wire fault detection
Output high speed signal	88 %	91.5 %	95 %	
Detectable frequency range	1 Hz	-	10 000 Hz	
Ordering number	149055			
Color of connector	Black			

Speed Sensor 7 – 32 V Technical Data

Speed Sensor 7 – 32 V_{DC} technical data and information about connector.

Speed sensor connector, 6-pin

Pinout: 1. NC 2. NC Speed signal 1
 Supply
 Ground
 NC

Technical data

Parameter	Min.	Max.	Note
Supply voltage range	7 V _{DC}	32 V _{DC}	
Supply protection	-	36 V _{DC}	36 V _{DC} over voltage protection -36 V _{DC} permanent reverse polarity protection
Max. required supply current	-	30 mA	
Max. output current	-	50 mA	
Operation mode	NPN open collector		Internal 2k7 pull-up resistor to supply

Technical data (continued)

Parameter	Min.	Max.	Note
Output low signal range	2 %	8 %	Max. output voltage 24 V _{DC}
Output high signal range	55 %	85 %	
Detectable frequency range	1 Hz	10 000 Hz	
Speed sensor order number	11102032		
Color of connector	White (natural plastic)		

Sensor position

Sensor position in SAE, DIN and Cartridge housing.

SAE and DIN housing

Target Ring

Speed (target) rings vary according to the diameter of the cylinder block or shaft on which they are installed. The number of teeth is shown in the table below.

The number of speed (target) ring teeth

H1B size	060	080	110	160	210	250
Teeth	71	78	86	95	104	108

Excessive axial shaft loading during installation of motors with speed sensors and cartridge housings must be avoided. High axial shaft loads during installation of motors can lead to a movement of the shaft and damage the speed sensor.

Operating parameters

Output speed

Start and low speed stability. The motor produces maximum starting torque at maximum displacement. Stable operation can be achieved at 15-34 rpm, ± 5 %, depending on system pressure, in applications that require low speed stability. Motor output speed becomes more stable as speed increases.

Rated speed is the highest output speed recommended at full power condition. Operating at, or below this speed will yield satisfactory product life.

Maximum speed is the highest operating speed permitted. Exceeding maximum speed reduces the product life and can cause loss of hydrostatic power and dynamic braking capacity. Never exceed the maximum speed limit under any operating conditions.

Operation between rated and maximum speed is reserved for **intermittent operation** (see *H1B speed range diagrams for open and closed circuit* on page 13) not to exceed 10 minutes durations, 2% of duty cycle based load-life, and 310 bar system delta pressure. Speed above rated are anticipated to occur during downhill braking (negative power). Contact factory for any operation above Rated speed when negative power is not involved.

During hydraulic braking and downhill conditions, the prime mover must be capable of providing sufficient braking torque in order to avoid pump over speed. This is especially important to consider for turbocharged and Tier 4 engines.

Warning

Unintended vehicle or machine movement hazard.

Exceeding maximum speed may cause a loss of hydrostatic drive line power and braking capacity. You must provide a braking system, redundant to the hydrostatic transmission, sufficient to stop and hold the vehicle or machine in the event of hydrostatic drive power loss. The braking system must also be sufficient to hold the machine in place when full power is applied.

Operating parameters

System pressure

System pressure is the differential pressure between high pressure system ports. It is the dominant operating variable affecting hydraulic unit life. High system pressure, which results from high load, reduces expected life. Hydraulic unit life depends on the speed and normal operating, or weighted average, pressure that can only be determined from a duty cycle analysis.

Application pressure is the high pressure relief or pressure limiter setting normally defined within the order code of the pump. This is the applied system pressure at which the driveline generates the maximum calculated pull or torque in the application.

Maximum working pressure is the highest recommended application pressure. Maximum working pressure is not intended to be a continuous pressure. Propel systems with application pressures at, or below, this pressure should yield satisfactory unit life given proper component sizing.

Maximum pressure is the highest allowable application pressure under any circumstance. For applications which are above the maximum working pressure, please contact Danfoss

Minimum pressure must be maintained under all operating conditions to avoid cavitation.

All pressure limits are differential pressures referenced to low loop (charge) pressure. Subtract the low loop gauge pressure from the high loop gauge pressure readings to compute the differential.

Summing pressure is the sum of both the low and high loop pressures. Summing pressure above 30 bar [435 psi] guarantees reliable use within the rated speed.

Servo pressure is the pressure in the servo system and is supplied from the high side of the loop to keep the motor at the required displacement.

Case pressure

Under normal operating conditions, **the rated case pressure** must not be exceeded. During cold start, case pressure must be kept below maximum intermittent case pressure. Size drain plumbing accordingly.

Caution

Possible component damage or leakage.

Operation with case pressure in excess of stated limits may damage seals, gaskets, and/or housings, causing external leakage. Performance may also be affected since charge and system pressures are referenced to case pressure.

External shaft seal pressure

In certain applications, the output shaft seal may be exposed to external pressures. The shaft seal is designed to withstand an external pressure up to 0.25 bar [3.6 psi] above the case pressure. The case pressure limits must also be followed to ensure the shaft seal is not damaged.

Operating parameters

Temperature	
	The high temperature limits apply at the hottest point in the transmission, which is normally the motor case drain. The system should generally be run at or below the published rated temperature .
	The maximum intermittent temperature is based on material properties and should never be exceeded.
	Cold oil will generally not affect the durability of the transmission components, but it may affect the ability of oil to flow and transmit power. Therefore, temperatures should remain 16 °C [30 °F] above the pour point of the hydraulic fluid.
	The minimum temperature relates to the physical properties of component materials.
	Size heat exchangers too keep the fluid within these limits. Danfoss recommends testing to verify that these temperature limits are not exceeded.
Viscosity	
	For maximum efficiency and bearing life, ensure that the fluid viscosity remains in the recommended range .
	The minimum visco site about the encountered only during build posingly of maximum ambient

The **minimum viscosity** should be encountered only during brief periods of maximum ambient temperature and severe duty cycle operation.

The **maximum viscosity** should be encountered only at cold start.

System design parameters

Filtration system

To prevent premature wear, ensure that only clean fluid enters the hydrostatic transmission circuit. A filter capable of controlling the fluid cleanliness to ISO 4406, class 22/18/13 (SAE J1165) or better, under normal operating conditions, is recommended. These cleanliness levels cannot be applied for hydraulic fluid residing in the component housing/case or any other cavity upon delivery from the factory.

The filter may be located on the pump (integral) or in another location (remote or suction). The integral filter has a filter bypass sensor to signal the machine operator when the filter requires changing. Filtration strategies include suction or pressure filtration. The selection of the filter strategy depends on a number of factors including the contaminant ingression rate, the generation of contaminants in the system, the required fluid cleanliness, and the desired maintenance interval. Filters are selected to meet the above requirements using rating parameters of efficiency and capacity.

Filter efficiency can be measured with a Beta ratio (β_X). For simple suction-filtered closed circuit transmissions and open circuit transmissions with return line filtration, a filter with a β -ratio within the range of $\beta_{35-45} = 75$ ($\beta_{10} \ge 2$) or better has been found to be satisfactory. For some open circuit systems, and closed circuits with cylinders being supplied from the same reservoir, a higher filter efficiency is recommended. This also applies to systems with gears or clutches using a common reservoir. For these systems, a charge pressure or return filtration system with a filter β -ratio in the range of $\beta_{15-20} = 75$ ($\beta_{10} \ge 10$) or better is typically required.

Because each system is unique, only a thorough testing and evaluation program can fully validate the filtration system. For more information, see *Design Guidelines for Hydraulic Fluid Cleanliness, Technical Information* **BC152886482150**.

Filter β_x -ratio is a measure of filter efficiency defined by ISO 4572. It is defined as the ratio of the number of particles greater than a given diameter ("x" in microns) upstream of the filter to the number of these particles downstream of the filter.

Filtration, cleanliness level and β_x -ratio (recommended minimum)

Cleanliness per ISO 4406	22/18/13
Efficiency β_x (charge pressure filtration)	$\beta_{15-20} = 75 \ (\beta_{10} \ge 10)$
Efficiency β_x (suction and return line filtration)	$\beta_{35\text{-}45} = 75 \ (\beta_{10} \ge 2)$
Recommended inlet screen mesh size	100 – 125 μm

Reservoir

Proper sizing of the hydrostatic system reservoir will allow maximum volume changes during all system operating modes and increase de-aeration of the fluid as it passes through the tank. A suggested minimum total reservoir volume is $\frac{5}{8}$ of the maximum charge pump flow per minute with a minimum fluid volume equal to $\frac{1}{2}$ of the maximum charge pump flow per minute. This allows 30 seconds of fluid dwell time for removing entrained air at the maximum return flow. This is usually adequate to allow for a closed reservoir having no breather in most applications.

Locate the reservoir outlet to the charge pump inlet above the bottom of the reservoir to take advantage of gravity separation and prevent large foreign particles from entering the charge inlet line. A 100-125 mesh screen over the reservoir outlet port is recommended. Position the reservoir inlet for the fluid return to discharge below the normal fluid level and toward the interior of the tank. A baffle or baffles, between the inlet and outlet of the reservoir will further increase de-aeration and reduce surging of the fluid.

System design parameters

Fluid selection

Ratings and performance data are based on operating with hydraulic fluids containing oxidation, rust and foam inhibitors. These fluids must possess good thermal and hydrolytic stability to prevent wear, erosion, and corrosion of motor components.

Caution

Never mix hydraulic fluids of different types.

Fire resistant fluids are also suitable at modified operating conditions. For more information, see *Hydraulic Fluids and Lubricants, Technical Information* **BC152886484524**.

Case drain

A case drain line must be connected to the case outlets of each motor to return the internal leakage oil to the system reservoir. When filling the case before start up, use the highest case drain outlet to promote complete filling of the case. The case drain fluid is typically the hottest fluid in the system. It is highly recommended to route the case drain flow through a heat exchanger before it is returned to the reservoir.

In some applications, it may be required the use of additional cross-flushing of the motor. If the motor is used mainly in a high speed application, higher cooling requirements may be needed for the rotating kit and tapered roller bearings. Use the lowest case drain port as the inlet port and the highest case drain port as the outlet port. This will ensure that the case is full of oil at all times.

Apply unit case pressure ratings to case drain routing and design.

Independent braking system

Unintended vehicle or machine movement hazard. Exceeding maximum speed may cause a loss of hydrostatic drive line power and braking capacity.

You must provide a braking system, redundant to the hydrostatic transmission, sufficient to stop and hold the vehicle or machine in the event of hydrostatic drive power loss. The braking system must also be sufficient to hold the machine in place when full power is applied.

Bearing loads and life

Bearing life is a function of speed, system pressure, motor angle and any external side or thrust loads. The influence of motor angle includes displacement as well as direction. External side loads are found in some applications such as a helical gear without its own support bearings, installed directly on to the motor shaft. All external side loads will act to reduce the normal bearing life of the motor. Other life factors include oil type and viscosity.

When external side loads are present, the allowable radial shaft loads are a function of the load position relative to the mounting flange, the load orientation relative to the internal loads and the operating pressures of the hydraulic unit. In applications where external shaft loads cannot be avoided, the impact on bearing life can be minimized by proper orientation of the load. Optimal motor orientation is a consideration of the net loading on the shaft from the external load and the motor rotating kit.

Contact Danfoss for a bearing life review if external side loads and thrust loads are present.

Shaft torque

Available shafts are capable to transmit the maximum torque capability at maximum working pressure. Lubrication or similar treatment of splined motor shaft is recommended for proper torque transmission.

For more information, see Lubrication of Splined Shafts, Data Sheet, Al152986482538.

H1B size, version, port options

H1 B A Z B C D E F G H J K L M N P Q R N N

H1B frame size

Code	Displacement
060	60 cm ³ [3.66 in ³]
080	80 cm ³ [4.88 in ³]
110	110 cm ³ [6.71 in ³]
160	160 cm ³ [9.76 in ³]
210	210 cm ³ [12.81 in ³]
250	250 cm ³ [15.25 in ³]

A – Product version

Α	Revision code
---	---------------

Z – Port configuration

Α	Inch, Customer O-ring port sealing according to ISO 11926-1

H1B control options

Code	Control type	Voltage	PCOR	Displacement	Connector	
L1		12 V	—			
L2		24 V	—			
D1		12 V De-energized = Maximum Displacemen		De-energized = Maximum Displacement		
D2		24 V	•			
M1	 Electric Proportional 	12 V	_			
M2		24 V	—			
K1		12 V	•	De-energized = Minimum Displacement		
K2		24 V			DEUTSCH DT04–2P	
E1		12 V	—			
E2		24 V	—	De-energized = Maximum Displacement		
F1		12 V	-		-	
F2		24 V	—			
T1	Electric 2-position	12 V		De-energized = Minimum Displacement		
T2	-	24 V	•			
P1	1	12 V	•	De-energized = Minimum Displacement	1	
P2	1	24 V	•	with Electric Proportional PCOR		

 \bullet = available option, - = not available option

B – hydraulic controls

Code	Control type	PCOR	Note		
DH	External pressure contr		External pressure control supply		
LH	- Hydraulic Proportional	—	Default (w/o control pressure) = Maximum		
мн		—	External pressure control supply		
кн		•	Default (w/o control pressure) = Minimum		
HE		_	External pressure control supply Default (w/o control pressure) = Maximum		
HF	Hydraulic 2-position	_	External pressure control supply		
тн		•	Default (w/o control pressure) = Minimum		
ТА	PCOR	Default (high pressure below PCOR pressure)			

B – electric controls

H1B PCOR and BPD options

H1 B A A B C D E F G H J K L M N P Q R NNN

Code	PCOR	BPD	Details	Use with control:
K1	•	Electric 12V	De-energized BPD = PCOR active at port A	К1
К2	•	Electric 24V	DEUTSCH DT04-2P connector	К2
M1	•	Electric 12V	De-energized BPD = PCOR active at port B	D1
M2	•	Electric 24V	DEUTSCH DT04-2P connector	D2
D1	•	Electric 12V	De-energized BPD = PCOR active at port A	P1, T1, TA
D2	•	Electric 24V	DEUTSCH DT04-2P connector	P2, T2, TA
G1	•	Electric 12V	De-energized BPD = PCOR active at port B	P1, T1, TA
G2	•	Electric 24V	DEUTSCH DT04-2P connector	P2, T2, TA
AA	-	—	—	E*
BA	—	—	—	L*, LH
CA	-	—	-	M*, MH
DA	•	—	-	P*, T*
EA	-	_	—	F*
КА	•	—	-	K*, KH
MA		—	_	D*, DH
HA		—		тн
НВ	•	Hydraulic		тн
HE	-	—	Internal servo pressure supply	HE
HF	-	_		HF
мн		Hydraulic	De-energized BPD = PCOR active, port not defined	DH
кн		Hydraulic	without pilot pressure difference on XA or XB	кн

 \bullet = available option, - = not available option

H1B threshold setting, orifice options

H1 B A A B C D E F G H J K L M N P Q R NNN

D – Threshold setting (Hydraulic adjustment)

Code	Pressure	Code	Pressure				
A	2 bar [29 psi]	М	14 bar [203 psi]				
В	3 bar [43.5 psi]	0	15 bar [217.6 psi]				
c	4 bar [58 psi]	Р	16 bar [232.1 psi]				
D	5 bar [72.5 psi]	Q	17 bar [246.6 psi]				
E	6 bar [87 psi]	R	18 bar [261 psi]				
F	7 bar [101.5 psi]	S	19 bar [275.6 psi]				
G	8 bar [116 psi]	Т	20 bar [290 psi]				
н	9 bar [130.5 psi]	U	22 bar [319 psi]				
I	10 bar [145 psi]	V	24 bar [348 psi]				
J	11 bar [159.5 psi]	W	26 bar [377.1 psi]				
к	12 bar [174 psi]	X	28 bar [406.1 psi]				
L	13 bar [188.5 psi]	Y	30 bar [435 psi]				
N	Non applicable		All options (except N) to be used for DH, LH, MH, KH controls.				

E – Orifices (M4 and M5)

Code	Diameter
A	Ø1.2 mm [0.047 in]
В	Ø0.8 mm [0.031 in]
c	Ø0.6 mm [0.024 in]

H1B endcap, flange and housing options

H1B A Z B C D E F G H J K L M N P Q R NNN

F – End-cap (ISO 6162, type 1)

Code	Description	Port type	Compatible controls			
PA		axial port	- Use with controls: L*, LH, D* and DH			
РВ	Endcap for proportional controls	side port				
RA		axial port				
RB		side port	Use with controls: M*, MH, K* and KH			
ТА		axial port	Use with controls: E*, F*, H*, T*, P*, TH, HE and			
тв	Endcap for 2-position and PCOR controls	side port	HF			

G – Flange and housing

Code	Description	060	080	110	160	210	250
VN	SAE flange motor housing (ISO 3019/1), no speed sensor port	•		•		•	
DN	DIN flange motor housing (ISO 3019/2), no speed sensor port	•		•	•	•	
CN	Cartridge flange motor housing, no speed sensor port	•		•	•	-	-
VS	SAE flange motor housing (ISO 3019/1), with speed sensor port	•		•	•	•	
DS	DIN flange motor housing (ISO 3019/2), with speed sensor port	•		•	•	•	
CS	Cartridge flange motor housing, with speed sensor port	•		•		-	-

H1B shaft, sensor, loop flushing shuttle system options

H – Shaft options according to speed ring

Code	Speed ring	Description	060	080	110	160	210	250
AN	No	14 teeth 12/24 pitch			_		_	-
AS	Yes	ANSI 92.1 1970 class 5				-	-	
BN	No	21 teeth 16/32 pitch			_			_
BS	Yes	ANSI 92.1 1970 class 5				-		
CN	No	23 teeth 16/32 pitch	_	\bullet	_	_	_	_
CS	Yes	ANSI 92.1 1970 class 5					-	
DN	No	27 teeth 16/32 pitch	_	_			•	
DS	Yes	ANSI 92.1 1970 class 5						
EN	No	13 teeth 8/16 pitch	-	-	•	•	-	_
ES	Yes	ANSI 92.1 1970 class 5						
FN	No	15 teeth 8/16 pitch	_	-	-	•	•	•
FS	Yes	ANSI 92.1 1970 class 5						
GN	No	W30x2x30x14x9g	•	-	-	-	-	_
GS	Yes	DIN 5480						
HN	No	W35x2x30x16x9g			_	_	_	_
HS	Yes	DIN 5480						
JN	No	W40x2x30x18x9g	_			_		_
JS	Yes	DIN 5480						
KN	No	W45x2x30x21x9g	_	_			_	_
KS	Yes	DIN 5480						
LN	No	W50x2x30x24x9g			_			
LS	Yes	DIN 5480	-	-	-			

J – Sensor

N	No speed sensor
В	Speed sensor, 7 V to 32 V, DEUTSCH DTM04-6P connector
s	Speed sensor, 4.5 V to 8 V,DEUTSCH DTM 04-6P connector
Р	Speed sensor ready (plugged)

K – Loop flushing shuttle system

Code	Description	060	080	110	160	210	250
A	Standard 6.5 bar [94 psi] shift pressure	•	•	•	•	•	•
В	12.5 bar [181 psi] shift pressure	-	-	•	•		
N	No loop flushing function						

Master Model Code

H1B loop flushing, special hardware options

H1 B A A B C D E F G H J K L M N P Q R N N N

L – Loop flushing relief valve (non-adjustable)

Code	Flow	060	080	110	160	210	250
05	5 l/min [1.321 US gal/min], 16 bar [232 psi] cracking pressure			-	-	-	-
10	10 l/min [2.642 US gal/min], 16 bar [232 psi] cracking pressure			•	-	-	-
15	15 l/min [3.963 US gal/min], 16 bar [232 psi] cracking pressure	-	-	•	-	-	-
20	20 l/min [5.283 US gal/min], 16 bar [232 psi] cracking pressure	-	-	-	•		
30	30 l/min [7.925 US gal/min], 16 bar [232 psi] cracking pressure	-	-	-	•		
40 *	40 l/min [10.567 US gal/min], 16 bar [232 psi] cracking pressure	-	-	-	•		
50 *	50 l/min [13.209 US gal/min], 16 bar [232 psi] cracking pressure	-	-	-			
NN	No loop flushing function	•	\bullet	•	•	•	

* Only in conjunction with loop flushing shuttle system **B**

M – Special hardware feature

NN	Standard hardware for 2-pos. controls
NP	Standard hardware for proportional controls [*]

* Motors build before March 2018 will have the NN in the Model code and will be updated automatically

Master Model Code

H1B minimum and maximum displacement options

H1 B A A B C D E F G H J K L M N P Q R N N N

N – Minimum displacement

Code	Description	Compatibl e frame size
	000 or 012 to 040 cm ³ /rev minimum displacement setting	60cc
	000 or 016 to 054 cm ³ /rev minimum displacement setting	80cc
	000 or 022 to 074 cm ³ /rev minimum displacement setting	110cc
ХХХ	000 or 032 to 108 cm ³ /rev minimum displacement setting	160cc
	000 or 042 to 142 cm ³ /rev minimum displacement setting	210cc
	000 or 050 to 169 cm ³ /rev minimum displacement setting	250cc
MB0	Plug (replaces minimum displacement limiter screw for 0° motors)	All

P – Maximum displacement (non adjustable)

Code	Displacement	Use with controls:	060	080	110	160	210	250
Ν	100 % max.	L*, M*, K* and D*		•	•			•
Α	95 % max.				-	-		-
В	90 % max.		-	-	-		-	•
c	85 % max.	L* and D*	-			-	-	
E	75 % max.			-		-	-	
z	100 % max.							
Q	95 % max. displacement	— E*, F*, H*, T* and P*			-			
R	90 % max.							
S	85 % max.	— E*, F*, H*, T* and P*						
т	80 % max.			•	•	•	•	•
U	75 % max.	— E*, F*, H*, T* and P*				•	-	-
V	65 % max.	E*, F*, H*, T* and P*		-	-	-	-	-

Master Model Code

H1B PCOR pressure, paint and nametag options

H1B A A B C D E F G H J K L M N P Q R NNN

Q – PCOR pressure setting

Code	Pressure setting	Code	Pressure setting
00	For all controls without PCOR function	23	230 bar [3336 psi]
16	160 bar [2321 psi]	24*	240 bar [3481 psi] – Standard setting
17	170 bar [2466 psi]	25	250 bar [3626 psi]
18	180 bar [2611 psi]	26	260 bar [3771 psi]
19	190 bar [2756 psi]	27	270 bar [3916 psi]
20	200 bar [2901 psi]	28	280 bar [4061 psi]
21	210 bar [3046 psi]	29	290 bar [4206 psi]
22	220 bar [3191 psi]	30	300 bar [4351 psi]

* Standard setting at production test for **P*** controls:

• 800 mA for **P1**

• 400 mA for **P2**

R – Paint and nametag

NNN	Black paint and nametag

Electric controls

Motor displacement can be changed electro hydraulically under load in response to an electrical signal from maximum displacement to minimum displacement and vice versa. Under some circumstances, such as contamination, the control spool could stick and cause the motor to stay at some displacement.

Electric proportional controls

The electric proportional control consists of a proportional solenoid which acts directly on a two-position, three-way porting spool. When activated, the solenoid pushes on the spool which then ports high pressure to the larger diameter of the servo piston. The servo piston and rotating group move to change the displacement to the point where the pressures on the servo are in balance with the force from the feedback spring.

De-energized = maximum displacement

With a de-energized to maximum displacement control, the de-energized proportional valve keeps the motor at maximum displacement. When energized, the solenoid pushes on the porting spool which moves to port high system pressure to the larger diameter end of the servo piston. Depending on the current supplied to the proportional valve, the motor will stroke between maximum displacement at zero current and minimum displacement at maximum current.

De-energized = minimum displacement

With a de-energized to minimum displacement control, the de-energized proportional valve keeps the motor at minimum displacement. When energized, the solenoid pushes on the porting spool which moves to port high system pressure to the larger diameter end of the servo piston. Depending on the current supplied to the proportional valve, the motor will stroke between minimum displacement at zero current and maximum displacement at maximum current.

Electric two-position controls

The electric two-position control consists of an off/on-solenoid which acts on a two position, three-way porting spool. Servo pressure is internally supplied to the two-position porting spool by an integral system pressure shuttle.

De-energized = maximum displacement

When the solenoid is de-energized, the motor runs at maximum displacement. When energized, the solenoid applies a force on the spool which ports high pressure to the larger diameter of the servo piston and strokes the motor to minimum displacement. When the solenoid is de-energized, the motor strokes back to maximum displacement.

De-energized = minimum displacement

When the solenoid is de-energized, the motor runs at minimum displacement. When energized, the solenoid applies a force on the spool which ports the larger diameter of the servo piston to tank, and strokes the motor to maximum displacement. When the solenoid is de-energized, the motor strokes back to minimum displacement.

Servo supply

The system shuttle check valve supplies the control system with high system pressure. A minimum servo supply pressure (high system pressure) of 20 bar above case pressure is required to shift the motor displacement.

Control options

To enhance the performance of our motors, several options are available to augment the performance of the control system. These control enhancements include:

- Pressure Compensator Over Ride, PCOR
- Proportional Pressure Compensator Over Ride, **PPCOR** and
- Brake Pressure Defeat, **BPD**

PCOR

The de-energized electric control keeps the motor at minimum displacement.

The electric control can be overridden by the PCOR using high loop system pressure. When the system pressure rises above the PCOR setting, the PCOR override will be activated. The motor then increases to maximum displacement.

The motor displacement is regulated automatically between minimum and maximum in response to the high loop pressure. This ensures optimal power throughout the entire displacement range of the motor.

The pressure compensator control can also be overridden with an electric off/on-solenoid option. When the solenoid is energized, the motor strokes to maximum displacement and stays at that position until the solenoid is de-energized.

Electric proportional with PCOR

In the de-energized state, the electric proportional control keeps the motor at minimum displacement until system pressure rises above the PCOR setting. When the PCOR activates, it ports high system pressure to the larger end of the servo piston, increasing the motor displacement to maximum.

Electric two-position with PCOR

In the de-energized state, the electric two-position control supplies both sides of the servo piston and keeps the motor at minimum displacement as long as the high loop pressure remains below the pressure compensator setting. If the high loop pressure rises above the pressure compensator setting, the porting spool ports the larger diameter of the servo piston to tank. The motor strokes in the direction of maximum displacement.

Electric two-position with proportional PCOR

The PPCOR valve consists of an electric proportional solenoid and a two-position, three-way porting spool with an adjustable spring force on the opposite end of the spool. Maximum signal current to the proportional solenoid overrides the pressure compensator and strokes the motor to maximum displacement. The proportional solenoid changes the pressure compensator setting to allow different, on the go, settings.

The solenoid and the high system pressure work against the spring on the end of the two-position, threeway porting spool. With decreased signal current on the proportional solenoid, the reduction of the forces from the proportional solenoid cause an increased pressure compensator setting for the high system pressure and consequently provides a proportional pressure compensator.

During production test, the PPCOR setting is adjusted to 240 bar with the adjusting screw on the control housing in reference to input current of:

- 800 mA for P1 (12 V)
- 400 mA for P2 (24 V)

Hydraulic controls

Motor displacement can be changed hydraulically, under load, from maximum to minimum displacement and vice versa in response to an external hydraulic signal.

Hydraulic proportional control

The hydraulic proportional control consists of a proportional hydraulic actuator which acts directly on a two-position, three-way porting spool. It uses an external source for control pressure supply. When pressurizing, the hydraulic actuator pushes the spool which then ports high pressure to the larger diameter of the servo piston. The servo piston and rotating group move to change the displacement to the point where the pressures on the servo are in balance with the force from the feedback spring.

De-energized = maximum displacement

With a de-energized (not pressurized) to maximum displacement control, the de-energized proportional valve keeps the motor at maximum displacement.

When energized, the hydraulic actuator pushes on the porting spool which moves to port high system pressure to the larger diameter end of the servo piston.

Depending on the pressure level supplied to the proportional actuator, the motor will stroke between maximum displacement at start pressure setting and minimum displacement at maximum pressure setting.

De-energized = minimum displacement

With a de-energized (not pressurized) to minimum displacement control, the de-energized proportional valve keeps the motor at minimum displacement.

When energized, the hydraulic actuator pushes on the porting spool which moves to port high system pressure to the larger diameter end of the servo piston.

Depending on the pressure level supplied to the proportional valve, the motor will stroke between minimum displacement at start pressure setting and maximum displacement at maximum spressure setting.

Hydraulic two-position control

The hydraulic two-position control uses an external source for control pressure supply (e.g. charge pressure). This control pressure acts on a two position, three-way porting spool. Servo pressure is internally supplied to the two-position porting spool by an integral system shuttle check valve.

Default (without control pressure) = maximum displacement

With no control pressure applied, the motor operates at maximum displacement.

When control pressure is applied, the spool shifts, porting high system pressure to the large diameter end of the servo piston, shifting the motor to minimum displacement.

When the control pressure is removed, spring forces move the spool, allowing the large diameter end of the servo piston to drain to tank, shifting the motor to maximum displacement.

Default (without control pressure) = minimum displacement

With no control pressure applied, the motor operates at minimum displacement.

When control pressure is applied, the spool shifts, porting the large diameter end of the servo piston to tank, shifting the motor to maximum displacement.

When the control pressure is removed, spring forces move the spool, porting high pressure to the large diameter end of the servo piston, shifting the motor to minimum displacement.

Hydraulic proportional with PCOR

In the energized (pressurized) state, the hydraulic proportional control keeps the motor at minimum displacement until system pressure rises above the PCOR setting.

When the PCOR activates, it ports high system pressure to the larger end of the servo piston, increasing the motor displacement to maximum.

Hydraulic two-position with PCOR

In the non-pressurized state, the hydraulic two-position control supplies both sides of the servo piston and keeps the motor at minimum displacement as long as the high loop pressure remains below the pressure compensator setting.

If the high loop pressure rises above the pressure compensator setting, the porting spool ports the larger diameter of the servo piston to tank.

The motor strokes in the direction of maximum displacement.

Brake Pressure Defeat (BPD)

For propel applications, use the electric or hydraulic BPD option in conjunction with the PCOR option.

Electric BPD

For propel applications, use the electric BPD option in conjunction with the PCOR option. The BPD shuttle valve is located ahead of the pressure compensator control valve.

The BPD consists of an electric off/on solenoid and a two-position, three-way porting spool. The applied logic allows the pressure compensator control to operate normally with high loop system pressure during acceleration and cuts off the supply pressure during deceleration if the motor is running in a pump mode (includes deceleration or overrun). This prevents rapid or uncontrolled deceleration while the machine is slowing down. With the BPD solenoid de-energized, the porting spool is centered by spring force.

The BPD solenoid must be controlled by a direction lever switch or an output signal from a microcontroller.

Electric solenoid connector

DEUTSCH connector, 2-pin

Connector ordering data

Description	Quantity	Ordering data
Mating connector	1	DEUTSCH DT06-2S
Wedge lock	1	DEUTSCH W2S
Socket contact (16 and 18 AWG)	2	DEUTSCH 0462-201-16141
Danfoss mating connector kit	1	K29657

Danfoss

Control operation and description

Hydraulic BPD

The BPD shuttle valve is located ahead of the pressure compensator control valve. The BPD function consists of an external pressure supply which acts on a two-position, three-way porting spool. The applied logic allows the pressure compensator control to operate normally with high loop system pressure during acceleration and cuts off the supply pressure during deceleration if the motor is running in pump mode. This prevents rapid or uncontrolled deceleration while the machine is slowing down. When pilot pressure difference on the control pressure ports of the BPD is too low the position of the porting spool is not defined.

H1B control response

H1 controls are available with orifices to assist in matching the rate of stroking time from maximum displacement (100 %) to minimum displacement (20 %) and vice versa to application requirements.

Stroking times for other pressure levels could be calculated at simulation model of request.

Typical response times shown below at the following conditions:

System and charge pressure = 210 bar [3046 psi] and 20 bar [290 psi] Viscosity and temperature = 20 mm²/s [97 SUS] and 60°C [140°F] Speed = 1500 min⁻¹ (rpm)

H1B typical response times

Orifice	Stroking	Size									
	direction	060	080	110	160	210	250				
Ø0.6 mm	Max. to min.	0.70 s	1.04 s	1.31 s	1.97 s	2.15 s	2.21 s				
[Dia 0.02 in]	Min. to max.	0.75 s	1.04 s	1.41 s	2.03 s	2.23 s	2.30 s				
Ø0.8 mm	Max. to min.	0.41 s	0.61 s	0.76 s	1.14 s	1.25 s	1.28 s				
[Dia 0.03 in]	Min. to max.	0.44 s	0.60 s	0.81 s	1.16 s	1.27 s	1.31 s				
Ø1.2 mm	Max. to min.	0.22 s	0.32 s	0.40 s	0.59 s	0.65 s	0.67 s				
[Dia 0.05 in]	Min. to max.	0.24 s	0.32 s	0.43 s	0.60 s	0.66 s	0.69 s				

Applications related to controls

The following table is provided to assist in selecting controls for various applications. The recommendation is based on experience with a wide range of applications.

Application	Control / PCOR, BPD options																		
	L* BA	D* MA	D* M*	M* CA	K* K*	K* KA	E* AA	F* EA	TA DA	TA D*	T* D*	P* D*	T* DA	P* DA	HE HE	HF HF	LH BA	DH MA	DH MH
Wheel loader ¹⁾															•				•
Roller compactor ¹⁾															•				<u> </u>
Paver-wheeled ¹⁾																			•
Paver-tracked ¹⁾																			
Crawler ¹⁾																		•	
Sweeper ¹⁾					•														•
Trencher ¹⁾																	•		•
Fork lift truck ¹⁾					•							•							
Agricultural ¹⁾																•			•
Wheel assist ¹⁾				•															
Forestry ¹⁾																			•
Tele-handler ¹⁾																			
Railroad ¹⁾							•												•
Snow groomer ¹⁾																	•		+
Snow blower ²⁾	-																-		+
Crane ³⁾	•												+						+
Crusher/Shredder ⁴⁾						•			•					•					+

Selecting controls for various applications

¹⁾ Propel function

²⁾ Blow drive function

³⁾ Winch function

⁴⁾ Roll function

* means option $\boldsymbol{1}=12~V_{DC}$ or $\boldsymbol{2}=24~V_{DC}$

L1BA and L2BA options

- L1 electric proportional 12 V / de-energized = max. displacement
- BA without Pressure Compensator Over Ride / without Brake Pressure Defeat
- L2 electric proportional 24 V / de-energized = max. displacement
- BA without Pressure Compensator Over Ride / without Brake Pressure Defeat

Hydraulic schematic

Options L1BA, L2BA

Solenoid C1 De-energized = max. displacement Full-energized = min. displacement

Displacement (%) versus Input Command (mA)

Formulas how to calculate start and end input command (mA) dependent on displacements

Input command (mA)	% displ.	Control *1	Control *2
Start input command	from 100 %	480 ± 10	240 ± 5
	from y % max.	(1 - V _{gy} /V _{gmax}) x 1110 + 480	(1 - V _{gy} /V _{gmax}) x 570 + 240

Formulas how to calculate start and end input command (mA) dependent on displacements (continued)

Input command (mA)	% displ.	Control *1	Control *2
End input command	at 0 %	1590 ± 130	810 ± 67
	at x % min.	(1 - V _{gx} /V _{gmax}) x 1110 + 480	(1 - V _{gx} /V _{gmax}) x 570 + 240
Maximum allowed current		1800	920

Where:

V _{gmax}	Maximum, theoretic	possible motor	displacement per	r revolution (cm ³	³ /rev)
-------------------	--------------------	----------------	------------------	-------------------------------	--------------------

- **V**_{ax} Minimum displacement setting of desired unit (cm³/rev)
- **V**_{gy} Maximum displacement setting of desired unit (cm³/rev)
- x Minimum displacement (%)
- y Maximum displacement (%)

Proportional solenoid data C1

Description		12 V	24 V		
Maximum current	Maximum current		920 mA		
Nominal coil resistance	coil resistance @ 20 °C [68 °F]		14.20 Ω		
	@ 80 °C [176 °F]	4.52 Ω	17.52 Ω		
Inductance	Inductance		140 mH		
PWM signal frequency	/M signal frequency Range Recommended [*]		70 – 200 Hz		
			150 Hz		
IP Rating IEC 60 529		IP 67	IP 67		
DIN 40 050, part 9		IP 69K with mating o	IP 69K with mating connector		
Connector color	•	Black			

* PWM signal required for optimum control performance.

Warning

Zero degree capability results in a high risk of overspeed and drops in efficiency if the motor operates between 0–20% displacement.

D1MA and D2MA options with PCOR

- **D1** electric proportional 12 V / **de-energized = max. displacement**
- **MA** with Pressure Compensator Over Ride / without Brake Pressure Defeat
- D2 electric proportional 24 V / de-energized = max. displacement
- MA with Pressure Compensator Over Ride / without Brake Pressure Defeat

Caution

This control is not for use in propel applications.

Hydraulic schematic

Options D1MA, D2MA

Solenoid C1 De-energized = max. displacement Full-energized = min. displacement

Displacement (%) versus Input Command (mA)

D1, D2 = D1, D2 Control
Z = Start setting range *Grey area* = Intended to be used for zero degree capability.

Formulas how to calculate start of	and end input comman	d (mA) dependent on c	lisplacements
i onnulus now to culculute start e	and cha mpat comman	a (init) acpendent on e	isplacements

Input command (mA)	% displ.	Control *1	Control *2
Start input command	from 100 %	480 ± 10	240 ± 5
	from y % max.	(1 - V _{gy} /V _{gmax}) x 1110 + 480	(1 - V _{gy} /V _{gmax}) x 570 + 240
End input command	at 0 %	1590 ± 130	810 ± 67
	at x % min.	(1 - V _{gx} /V _{gmax}) x 1110 + 480	(1 - V _{gx} /V _{gmax}) x 570 + 240
Maximum allowed current	t .	1800	920

Where:

Vgmax Maximum, theoretic possible motor displacement per revolution (cm³/rev)

- **V**_{gx} Minimum displacement setting of desired unit (cm³/rev)
- **V**_{gy} Maximum displacement setting of desired unit (cm³/rev)
- x Minimum displacement (%)
- y Maximum displacement (%)

Proportional solenoid data C1

Description		12 V	24 V	
Maximum current	Maximum current		920 mA	
Nominal coil resistance	@ 20 °C [68 °F]	3.66 Ω	14.20 Ω	
	@ 80 °C [176 °F]	4.52 Ω	17.52 Ω	
Inductance	33 mH 140 mH		140 mH	
PWM signal frequency	Range	70 – 200 Hz		
	Recommended*	150 Hz		
IP Rating IEC 60 529		IP 67	IP 67	
DIN 40 050, part 9		IP 69K with mating of	IP 69K with mating connector	
Connector color		Black		

* PWM signal required for optimum control performance.

Warning

Zero degree capability results in a high risk of overspeed and drops in efficiency if the motor operates between 0–20% displacement.

D1M1 and D2M2 options with PCOR and electric BPD

D1 – electric proportional 12 V / de-energized = max. displacement
 M1 – with PCOR / with electric BPD 12 V / de-energized BPD = PCOR active at port B

D2 – electric proportional 24 V / de-energized = max. displacement
 M2 – with PCOR / with electric BPD 24 V / de-energized BPD = PCOR active at port B

D1M1, D2M2 option

Solenoid C1 De-energized = max. displacement Full-energized = min. displacement

Displacement (%) versus Input Command (mA)

D1, D2 = D1, D2 Control
Z = Start setting range *Grey area* = Intended to be used for zero degree capability.

For the formulas to calculate an input command dependent on displacement, please see *D1MA and D2MA options with PCOR* on page 48.

Proportional control solenoid data C1

Description		12 V	24 V	
Maximum current		1800 mA	920 mA	
Nominal coil resistance	@ 20 °C [68 °F]	3.66 Ω	14.20 Ω	
	@ 80 °C [176 °F]	4.52 Ω	17.52 Ω	
Inductance	Inductance		140 mH	
PWM signal frequency	VM signal frequency Range		70 – 200 Hz	
	Recommended*	150 Hz		
IP Rating IEC 60 529		IP 67	IP 67	
DIN 40 050, part 9		IP 69K with mating	IP 69K with mating connector	
Connector color		Black	Black	

* PWM signal required for optimum control performance.

Two-position solenoid data C5 (Brake pressure defeat)

Description		12 V	24 V
Supply voltage	Minimum	9.5 V _{DC}	19 V _{DC}
	Max. (continuous)	14.6 V _{DC}	29 V _{DC}
Nominal coil resistance @ 20 °C [68 °F]		8.4 Ω	34.5 Ω
Input current	Recommended	1050 mA 500 mA	
IP Rating	IEC 60 529	IP 67	
DIN 40 050, part 9		IP 69K with mating connector	
Bi-directional diode		yes	
Connector color		Black	

A Warning

Zero degree capability results in a high risk of overspeed and drops in efficiency if the motor operates between 0–20% displacement.

M1CA and M2CA options

- M1 electric proportional 12 V / de-energized = minimum displacement CA – without Pressure Compensator Over Ride / without Brake Pressure Defeat
- M2 electric proportional 24 V / de-energized = minimum displacement CA – without Pressure Compensator Over Ride / without Brake Pressure Defeat

Hydraulic schematic

Options: M1CA, M2CA

Solenoid C1 De-energized = min. displacement Full-energized = max. displacement

Displacement (%) versus Input Command (mA)

M1, M2 = M1, M2 Control

Grey area = Intended to be used for zero degree capability.

Formulas how to calculate start and end input command (mA) dependent on displacements

Input command (mA)	% displ.	Control *1	Control *2
Start input command	from 0 %	480 ± 10	240 ± 5
	from x % min.	(V _{gx} /V _{gmax}) x 1110 + 480	(V _{gx} /V _{gmax}) x 570 + 240

Formulas how to calculate start and end input command (mA) dependent on displacements (continued)

Input command (mA)	% displ.	Control *1	Control *2
End input command	at 100 %	1590 ± 130	810 ± 67
	at y % max.	(V _{gy} /V _{gmax}) x 1110 + 480	(V _{gy} /V _{gmax}) x 570 + 240
Maximum allowed current		1800	920

Where:

V _{gmax}	Maximum, theoretic	possible motor	displacement pe	r revolution	(cm ³ /rev)
-------------------	--------------------	----------------	-----------------	--------------	------------------------

- **V**_{ax} Minimum displacement setting of desired unit (cm³/rev)
- **V**_{gy} Maximum displacement setting of desired unit (cm³/rev)
- x Minimum displacement (%)
- y Maximum displacement (%)

Proportional solenoid data C1

Description		12 V	24 V		
Maximum current	Maximum current		920 mA		
Nominal coil resistance	coil resistance @ 20 °C [68 °F]		14.20 Ω		
	@ 80 °C [176 °F]	4.52 Ω	17.52 Ω		
Inductance	Inductance		140 mH		
PWM signal frequency	/M signal frequency Range Recommended [*]		70 – 200 Hz		
			150 Hz		
IP Rating IEC 60 529		IP 67	IP 67		
DIN 40 050, part 9		IP 69K with mating o	IP 69K with mating connector		
Connector color	•	Black			

* PWM signal required for optimum control performance.

Warning

Zero degree capability results in a high risk of overspeed and drops in efficiency if the motor operates between 0–20% displacement.

K1KA and K2KA options with PCOR

- **K1** electric proportional 12 V / **de-energized = min. displacement** / with PCOR
- KA with Pressure Compensator Over Ride / without Brake Pressure Defeat
 - **K2** electric proportional 24 V / **de-energized = min. displacement** / with PCOR **KA** – with Pressure Compensator Over Ride / without Brake Pressure Defeat

🛕 Warning

This control is not for use in propel applications.

Hydraulic schematic

Options K1KA, K2KA

Solenoid C1 De-energized = min. displacement Full-energized = max. displacement

Displacement (%) versus Input Command (mA)

Formulas how to calculate start and end input command (mA) dependent on displacements

Input command (mA)	% displ.	Control *1	Control *2
Start input command	from 0 %	480 ± 10	240 ± 5
	from x % min.	(V _{gx} /V _{gmax}) x 1110 + 480	(V _{gx} /V _{gmax}) x 570 + 240
End input command	at 100 %	1590 ± 130	810 ± 67
	at y % max.	(V _{gy} /V _{gmax}) x 1110 + 480	(V _{gy} /V _{gmax}) x 570 + 240
Maximum allowed curren	t	1800	920

Where:

- V_{gmax} Maximum, theoretic possible motor displacement per revolution (cm³/rev)
- **V**_{gx} Minimum displacement setting of desired unit (cm³/rev)
- **V**_{gy} Maximum displacement setting of desired unit (cm³/rev)
- x Minimum displacement (%)
- y Maximum displacement (%)

Proportional solenoid data C1

Description		12 V	24 V	
Maximum current	Maximum current		920 mA	
Nominal coil resistance	@ 20 °C [68 °F]	3.66 Ω	14.20 Ω	
	@ 80 °C [176 °F]	4.52 Ω	17.52 Ω	
Inductance	33 mH 140 mH		140 mH	
PWM signal frequency	Range	70 – 200 Hz		
	Recommended*	150 Hz		
IP Rating IEC 60 529		IP 67	IP 67	
DIN 40 050, part 9		IP 69K with mating of	IP 69K with mating connector	
Connector color		Black		

* PWM signal required for optimum control performance.

Warning

Zero degree capability results in a high risk of overspeed and drops in efficiency if the motor operates between 0–20% displacement.

K1K1 and K2K2 options with PCOR and electric BPD

- **K1** electric proportional 12 V / **de-energized = min. displacement** / with PCOR **K1** – with PCOR / with electric BPD 12 V / de-energized BPD = PCOR active at port A
- **K2** electric proportional 24 V / **de-energized = min. displacement** / with PCOR **K2** – with PCOR / with electric BPD 24 V / de-energized BPD = PCOR active at port A

Hydraulic schematic

Options K1K1, K2K2

Solenoid C1 De-energized = min. displacement Full-energized = max. displacement

Displacement (%) versus Input Command (mA)

For the formulas to calculate start and end input command dependent on displacements please see *K1KA* and *K2KA* options with PCOR on page 54.

Proportional control solenoid data C1

Description		12 V	24 V	
Maximum current	Maximum current		920 mA	
Nominal coil resistance	Nominal coil resistance @ 20 °C [68 °F]		14.20 Ω	
	@ 80 °C [176 °F]	4.52 Ω	17.52 Ω	
Inductance		33 mH	140 mH	
PWM signal frequency	PWM signal frequency Range		70 – 200 Hz	
	Recommended*	150 Hz		
IP Rating IEC 60 529 IP 67				
DIN 40 050, part 9		IP 69K with mating	IP 69K with mating connector	
Connector color		Black	Black	

* PWM signal required for optimum control performance.

Two-position solenoid data C5 (Brake pressure defeat)

Description		12 V	24 V	
Supply voltage	Minimum	9.5 V _{DC}	19 V _{DC}	
	Max. (continuous)	14.6 V _{DC}	29 V _{DC}	
Nominal coil resistance @ 20	Nominal coil resistance @ 20 °C [68 °F]		34.5 Ω	
Input current	Recommended	1050 mA	500 mA	
IP Rating	IEC 60 529	IP 67		
DIN 40 050, part 9		IP 69K with mating connector		
Bi-directional diode		yes		
Connector color	Connector color		Black	

A Warning

Zero degree capability results in a high risk of overspeed and drops in efficiency if the motor operates between 0–20% displacement.

E1AA and E2AA options

- E1 electric two-position 12 V / de-energized = max. displacement
- E2 electric two-position 24 V / de-energized = max. displacement
 - AA- without Pressure Compensator Over Ride / without Brake Pressure Defeat

Gauge port system pressure

Speed sensor (optional)

Options E1AA, E2AA

Solenoid C6 De-energized = max. displacement Energized = min. displacement

MA, MB

Ν

Where:

- 1 Minimum displacement
- 2 Maximum displacement

Two-position control solenoid C6 technical data

Description		12 V	24 V
Supply voltage	Minimum	9.5 V _{DC}	19 V _{DC}
	Max. (continuous)	14.6 V _{DC}	29 V _{DC}
Nominal coil resistance @ 20	°C [68 °F]	8.4 Ω	34.5 Ω
Input current	Recommended	1050 mA	500 mA
IP Rating IEC 60 529 DIN 40 050, part 9		IP 67	
		IP 69K with mating connector	
Bi-directional diode		yes	
Connector color		Black	

F1EA and F2EA options

F1 – electric two-position 12 V / de-energized = min. displacement
F2 – electric two-position 24 V / de-energized = min. displacement

EA- without Pressure Compensator Over Ride / without Brake Pressure Defeat

Options F1EA, F2EA

Solenoid C6 De-energized = min. displacement Energized = max. displacement

Where:

1 Maximum displacement

2 Minimum displacement

Two-position control solenoid C6 technical data

Description		12 V	24 V	
Supply voltage	Minimum	9.5 V _{DC}	19 V _{DC}	
	Max. (continuous)	14.6 V _{DC}	29 V _{DC}	
Nominal coil resistance @	20 °C [68 °F]	8.4 Ω	34.5 Ω	
Input current	Recommended	1050 mA	500 mA	
IP Rating	P Rating IEC 60 529		IP 67	
DIN 40 050, part 9		IP 69K with mating	IP 69K with mating connector	
Bi-directional diode		yes	yes	
Connector color		Black	Black	

T1DA and T2DA options with PCOR

- T1 electric two-position 12 V / de-energized = minimum displacement
- T2 electric two-position 24 V / de-energized = minimum displacement
 - **DA** with PCOR / without Brake Pressure Defeat

Warning

This control is not for use in propel applications.

Solenoid C6 De-energized = min. displacement Full-energized = max. displacement

Displacement versus PCOR pressure

<u>Where:</u> 1 Maximum displacement

- 2 Minimum displacement
- 3 Start setting range

Two-position solenoid data C6

Description		12 V	24 V
Supply voltage	Minimum	9.5 V _{DC}	19 V _{DC}
	Max. (continuous)	14.6 V _{DC}	29 V _{DC}
Nominal coil resistance @ 20 °C [68 °F]		8.4 Ω	34.5 Ω
Input current	Recommended	1050 mA	500 mA
IP Rating IEC 60 529 DIN 40 050, part 9		IP 67	
		IP 69K with mating connector	

P003 409

Description	12 V	24 V
Bi-directional diode	yes	
Connector color	Black	

T1D1 and T2D2 options with PCOR and electric BPD

- T1 electric two-position 12 V / de-energized = min. displacement
- D1 with PCOR / with electric 12 V BPD, de-energized BPD = PCOR active at port A
- **T2** electric two-position 24 V / **de-energized = min. displacement**
- D2 with PCOR / with electric 24 V BPD, de-energized BPD = PCOR active at port A

Hydraulic schematic

Options T1D1, T2D2

Solenoid C6 De-energized = min. displacement Full-energized = max. displacement

<u>Where:</u> **1** Maximum displacement **2** Minimum displacement **3** Start setting range

Two-position solenoids C5 (Brake pressure defeat) and C6 technical data

Description		12 V	24 V
Supply voltage	Minimum	9.5 V _{DC}	19 V _{DC}
	Max. (continuous)	14.6 V _{DC}	29 V _{DC}
Nominal coil resistance @ 20 °C [68 °F]		8.4 Ω	34.5 Ω
Input current	Recommended	1050 mA	500 mA
IP Rating	ting IEC 60 529		
DIN 40 050, part 9		IP 69K with mating connector	

Description	12 V	24 V
Bi-directional diode	yes	
Connector color	Black	

T1G1 and T2G2 options with PCOR and electric BPD

- T1 electric two-position 12 V / de-energized = min. displacement
- G1 with PCOR / with electric 12 V BPD, de-energized BPD = PCOR active at port B
- T2 electric two-position 24 V / de-energized = min. displacement
- **G2** with PCOR / with electric 24 V BPD, **de-energized BPD = PCOR active at port B**

Solenoid C6 De-energized = min. displacement Full-energized = max. displacement

<u>Where:</u> **1** Maximum displacement **2** Minimum displacement **3** Start setting range

Two-position solenoids C5 (Brake pressure defeat) and C6 technical data

Description		12 V	24 V
Supply voltage	Minimum	9.5 V _{DC}	19 V _{DC}
	Max. (continuous)	14.6 V _{DC}	29 V _{DC}
Nominal coil resistance @ 20 °C [68 °F]		8.4 Ω	34.5 Ω
Input current	Recommended	1050 mA	500 mA
IP Rating IEC 60 529 DIN 40 050, part 9		IP 67	
		IP 69K with mating connector	

Description	12 V	24 V
Bi-directional diode	yes	
Connector color	Black	

P1DA and P2DA options with PCOR

P1 – electric two-position control 12 V, **de-energized = minimum displacement** with electric proportional PCOR 12 V

P2 – electric two-position control 24 V, **de-energized = minimum displacement** with electric proportional PCOR 24 V

DA - with electric proportional PCOR, without Brake Pressure Defeat

🛕 Warning

This control is not for use in propel applications.

Solenoid C6 De-energized = min. displacement Full-energized = max. displacement

Caution

If the signal to the PPCOR is lost or drops below the range shown in the chart, the PCOR setting will potentially increase to pressure levels above the recommended application limits or the regulated pressure control of the pump, and in effect, disable the PCOR function.

The PCOR pressure level can be proportionally changed with the input current to the solenoid.

	Voltage	All sizes (mA)	Variables:
	12 V	$I_{PCOR} = -2.724 \text{ x P}_{PCOR} + 1453.8$	P _{PCOR} = PCOR pressure level (bar)
2	24 V	$I_{PCOR} = -1.399 \text{ x P}_{PCOR} + 735.7$	I _{PCOR} = Current input to proportional PCOR solenoid (mA)

Formulas to calculate pressure level dependent on input current

Proportional control solenoid data C6

Description		12 V	24 V	
Maximum current		1800 mA	920 mA	
Nominal coil resistance @ 20 °C [68 °F]		3.66 Ω	14.20 Ω	
	@ 80 °C [176 °F]	4.52 Ω	17.52 Ω	
Inductance		33 mH	140 mH	
PWM signal frequency Range		70 – 200 Hz	70 – 200 Hz	
	Recommended*	150 Hz		
IP Rating IEC 60 529 IP 67				
DIN 40 050, part 9		IP 69K with mating	IP 69K with mating connector	
Connector color		Black	Black	

* PWM signal required for optimum control performance.

P1D1 and P2D2 options with PCOR and electric BPD

- P1 electric two-position 12 V, **de-energized = min. displacement** with electric prop. PCOR 12 V D1 – with electric prop. PCOR, with electric BPD 12 V, **de-energized BPD = PCOR active at port A**
- P2 electric two-position 24 V, de-energized = min. displacement with electric prop. PCOR 24V
 D2 with electric prop. PCOR, with electric BPD 24 V, de-energized BPD = PCOR active at port A

Options P1D1, P2D2

Solenoid C6 De-energized = min. displacement Full-energized = max. displacement

PCOR pressure (bar) versus Input command (mA)

Caution

If the signal to the PPCOR is lost or drops below the range shown in the chart, the PCOR setting will potentially increase to pressure levels above the recommended application limits or the regulated pressure control of the pump, and in effect, disable the PCOR function.

The PCOR pressure level can be proportionally changed with the input current to the solenoid.

For formulas to calculate pressure level dependent on input current please see *P1DA and P2DA options with PCOR* on page 66.

Two-position solenoid data C5 (Brake pressure defeat)

Description		12 V	24 V
Supply voltage	Minimum	9.5 V _{DC}	19 V _{DC}
	Max. (continuous)	14.6 V _{DC}	29 V _{DC}
Nominal coil resistance @ 20 °C [68 °F]		8.4 Ω	34.5 Ω
Input current	Recommended	1050 mA	500 mA
IP Rating	IEC 60 529	IP 67	
	DIN 40 050, part 9	IP 69K with mating connecto	or
Bi-directional diode		yes	
Connector color		Black	

Proportional control solenoid data C6

Description		12 V	24 V	
Maximum current		1800 mA	920 mA	
Nominal coil resistance	@ 20 °C [68 °F]	3.66 Ω	14.20 Ω	
	@ 80 °C [176 °F]	4.52 Ω	17.52 Ω	
Inductance		33 mH	140 mH	
PWM signal frequency	Range	70 – 200 Hz	70 – 200 Hz	
	Recommended*	150 Hz		
IP Rating	IEC 60 529	IP 67		
	DIN 40 050, part 9	IP 69K with mating	IP 69K with mating connector	
Connector color		Black	Black	

* PWM signal required for optimum control performance.

P1G1 and P2G2 options with PCOR and electric BPD

- P1 electric prop. 12V / de-energized = min. displacement with electric prop. PCOR 12V
 G1 with electric propor. PCOR / with electric BPD 12V, de-energized BPD = PCOR active at port B
- P2 electric prop. 24V / de-energized = min. displacement with electric prop. PCOR 24V
 G2 with electric propor. PCOR / with electric BPD 24V, de-energized BPD = PCOR active at port B

Options P1G1, P2G2

Solenoid C6 De-energized = min. displacement Full-energized = max. displacement

PCOR pressure (bar) versus Input command (mA)

Maximum PCOR setting = 300 bar [4351 psi], * Production test setting = 240 bar

Caution

If the signal to the PPCOR is lost or drops below the range shown in the chart, the PCOR setting will potentially increase to pressure levels above the recommended application limits or the regulated pressure control of the pump, and in effect, disable the PCOR function.

The PCOR pressure level can be proportionally changed with the input current to the solenoid.

For formulas to calculate pressure level dependent on input current please see *P1DA and P2DA options with PCOR* on page 66.

Two-position solenoid data C5 (Brake pressure defeat)

Description		12 V	24 V
Supply voltage	Minimum	9.5 V _{DC}	19 V _{DC}
	Max. (continuous)	14.6 V _{DC}	29 V _{DC}
Nominal coil resistance @ 20 °C [68 °F]		8.4 Ω	34.5 Ω
Input current	Recommended	1050 mA	500 mA
IP Rating	IEC 60 529	IP 67	
	DIN 40 050, part 9	IP 69K with mating connecto	or
Bi-directional diode		yes	
Connector color		Black	

Proportional control solenoid data C6

Description		12 V	24 V	
Maximum current		1800 mA	920 mA	
Nominal coil resistance	@ 20 °C [68 °F]	3.66 Ω	14.20 Ω	
	@ 80 °C [176 °F]	4.52 Ω	17.52 Ω	
Inductance		33 mH	140 mH	
PWM signal frequency	Range	70 – 200 Hz	70 – 200 Hz	
	Recommended*	150 Hz		
IP Rating	IEC 60 529	IP 67		
	DIN 40 050, part 9	IP 69K with mating	IP 69K with mating connector	
Connector color		Black	Black	

* PWM signal required for optimum control performance.

Hydraulic proportional and two-position controls

LHBA option

LH – hydraulic proportional non-pressurized = max. displacement BA - without Pressure Compensator Over Ride / without Brake Pressure Defeat

> HX1 X1 HL1

Hydraulic schematic

Option LHBA

Hydraulic actuator X1 Non-pressurized = max. displacement. Full-pressurized = min. displacement.

Displacement (%) versus Input command (bar)

- 1 = Control ramp, 100% 20% (14 bar [203 psi])
- **2** = Control ramp, 100% 0% (17.5 bar [254 psi])
- **3** = Control start setting range

Grey arealf the signal to = Intended to be used for zero degree capability.

Control start setting range (pressure above case pressure)

ontroi start setting range (pressure above case pressure)	
p _{start} (possible settings per MMC adjustable)	2 to 30 bar [29 to 435 psi]
P _{max allowable}	Control start setting + 50 bar [725 psi]

Control ramp		
From 100% to 20% displacement	14 bar [203 psi]	
From 100% to 0% displacement	17.5 bar [254 psi]	

Below are formulas to calculate start and end input command dependent on displacement:

Formulas to calculate start and end input command

Control type	Input command (bar)	% displacement	All sizes (bar)
	Start input command	from 100%	$p_{start} \pm 0.5$
цн		from y% max.	$(1 - V_{gy}/V_{gmax}) \times 17.5 + p_{start} \pm 0.5$
	End input command	at 0 %	p _{start} + 17.5 ± 2.5
		at x % min.	$(1 - V_{gx}/V_{gmax}) \times 17.5 + p_{start} \pm 2.5$

Where:

V_{gmax} Maximum, theoretic possible motor displacement per revolution (cm³/rev)

V_{qx} Minimum displacement setting of desired unit (cm³/rev)

Vgy Maximum displacement setting of desired unit (cm³/rev)

x Minimum displacement (%)

y Maximum displacement (%)

A Warning

B

Hydraulic proportional and two-position controls

MHCA option

MH – hydraulic proportional non-pressurized = min. displacement CA - without Pressure Compensator Over Ride / without Brake Pressure Defeat

ž

HX1 HX1 HL1

P005905

Option MHCA

Hydraulic actuator X1 Non-pressurized = min. displacement. Full-pressurized = max. displacement.

' <u>↓</u>	— - — - — - <u>↓</u> - <u>↓</u> - <u>↓</u> - — - M4 M5	
А, В	Main pressure lines	
L1, L2	Drain lines	
M4, M5	Gauge port servo pressure	
MA, MB	Gauge port system pressure	
X1	Control pressure port	
Ν	Speed sensor (optional)	

Displacement (%) versus Input Command (bar)

- 1 = Control ramp, 100% 20% (14 bar [203 psi])
- 2 = Control ramp, 100% 0% (17.5 bar [254 psi])
- **3** = Control start setting range

Grey arealf the signal to = Intended to be used for zero degree capability.

Control start setting range (pressure above case pressure)		
p _{start} (possible settings per MMC adjustable)	2 to 30 bar [29 to 435 psi]	
P _{max allowable}	Control start setting + 50 bar [725 psi]	

Control ramp		
From 100% to 20% displacement	14 bar [203 psi]	
From 100% to 0% displacement	17.5 bar [254 psi]	

Formulas to calculate start and end input command

Control type	Input command (bar)	% displacement	All sizes (bar)
	Start input command	from 0%	$p_{start} \pm 0.5$
мн		from x% max.	$(V_{gx}/V_{gmax}) \times 17.5 + p_{start} \pm 0.5$
	End input command	at 100%	$p_{start} + 17.5 \pm 2.5$
		at y% min.	$(V_{gy}/V_{gmax}) \times 17.5 + p_{start} \pm 2.5$

Where:

V_{gmax} Maximum, theoretic possible motor displacement per revolution (cm³/rev)

 $\mathbf{V}_{\mathbf{gx}}$ Minimum displacement setting of desired unit (cm³/rev)

V_{gy} Maximum displacement setting of desired unit (cm³/rev)

- x Minimum displacement (%)
- y Maximum displacement (%)

Warning

DHMA option with PCOR

DH – hydraulic proportional / non-pressurized = max. displacementMA – with Pressure Compensator Over Ride / without Brake Pressure Defeat

Hydraulic schematic

Option DHMA

Hydraulic actuator X1 Non-pressurized = max. displacement. Full-pressurized = min. displacement.

Where:

A, B Main pressure lines		
L1, L2	Drain lines	
M4, M5	Gauge port servo pressure	
MA, MB	Gauge port system pressure	
X1	Control pressure port	
Ν	Speed sensor (optional)	

Displacement (%) versus Input Command (bar)

- 1 = Control ramp, 100% 20% (14 bar [203 psi])
- 2 = Control ramp, 100% 0% (17.5 bar [254 psi])
- **3** = Control start setting range
- **4** = PCOR start setting range

Grey area = Intended to be used for zero degree capability.

Control start setting range (pressure above case pressure)		
p _{start} (possible settings per MMC adjustable) 2 to 30 bar [29 to 435 psi]		
P _{max allowable}	Control start setting + 50 bar [725 psi]	
Control ramp		
From 100% to 20% displacement	14 bar [203 psi]	
From 100% to 0% displacement 17.5 bar [254 psi]		

Formulas to calculate start and end input command

Control type	Input command (bar)	% displacement	All sizes (bar)
	Start input command	from 100%	$p_{start} \pm 0.5$
DH		from y% max.	$(1 - V_{gy}/V_{gmax}) \times 17.5 + p_{start} \pm 0.5$
DH	End input command	at 0 %	p _{start} + 17.5 ± 2.5
		at x % min.	$(1 - V_{gx}/V_{gmax}) \times 17.5 + p_{start} \pm 2.5$

Where:

V_{gmax} Maximum, theoretic possible motor displacement per revolution (cm³/rev)

V_{gx} Minimum displacement setting of desired unit (cm³/rev)

Vgy Maximum displacement setting of desired unit (cm³/rev)

x Minimum displacement (%)

y Maximum displacement (%)

Warning

DHMH option with PCOR and BPD

DH – hydraulic proportional / **non-pressurized = max. displacement**

MH – with Pressure Compensator Over Ride / with Brake Pressure Defeat (non-pressurized BPD = PCOR active port not defined without pilot pressure difference on XA or XB)

Hydraulic schematic

Option DHMH

Hydraulic actuator X1 Non-pressurized = max. displacement. Full-pressurized = min. displacement.

А, В	Main pressure lines
L1, L2	Drain lines
M4, M5	Gauge port servo pressure
MA, MB	Gauge port system pressure
XA, XB	Control pressure ports brake pressure defeat
X1	Control pressure port
Ν	Speed sensor (optional)

Displacement (%) versus Input Command (bar)

1 = Control ramp, 100% - 20% (14 bar [203 psi])

- **2** = Control ramp, 100% 0% (17.5 bar [254 psi])
- 3 = Control start setting range
- **4** = PCOR start setting range

Grey area = Intended to be used for zero degree capability.

Control start setting range (pressure above case pressure)		
p _{start} (possible settings per MMC adjustable)	2 to 30 bar [29 to 435 psi]	
P _{max allowable}	Control start setting + 50 bar [725 psi]	
Control ramp		
Control ramp		
Control ramp From 100% to 20% displacement	14 bar [203 psi]	

Formulas to calculate start and end input command

Control type	Input command (bar)	% displacement	All sizes (bar)
	Start input command	from 100%	$p_{start} \pm 0.5$
DH		from y% max.	$(1 - V_{gy}/V_{gmax}) \times 17.5 + p_{start} \pm 0.5$
	End input command	at 0%	p _{start} + 17.5 ± 2.5
		at x% min.	$(1 - V_{gx}/V_{gmax}) \times 17.5 + p_{start} \pm 2.5$

Where:

Vgmax Maximum, theoretic possible motor displacement per revolution (cm³/rev)

- **V**_{ax} Minimum displacement setting of desired unit (cm³/rev)
- V_{gy} Maximum displacement setting of desired unit (cm³/rev)
- x Minimum displacement (%)
- y Maximum displacement (%)

Pressure Compensator OverRide (PCOR) with Brake Pressure Defeat (BPD) configuration

A brake pressure defeat (BPD) shuttle valve ahead of the pressure compensator prevents operation in the deceleration direction (when motor is running in pump mode). This is designed to prevent rapid or uncontrolled deceleration while the vehicle/machine is slowing down.

Pressure compensator override with brake pressure defeat is mainly used in systems with pumps having electric or hydraulic proportional controls or automotive controls.

The brake pressure defeat must be controlled by a 2-line external signal based on direction of motor rotation, see the following table:

Pressure Compensator OverRide (PCOR) operation
--

Motor rotation	High pressure port	Control pressure on port ¹⁾	PCOR function
CW	A	ХА	no
CW	A	ХВ	yes
CCW	В	ХА	yes
CCW	В	ХВ	no

¹⁾ Differential control pressure between ports XA and XB: $p_{min} = 2.5$ bar [36 psi] and $p_{max} = 50$ bar [725 psi]

A Warning

KHKA option with PCOR

KH – hydraulic proportional / non-pressurized = min. displacementKA – with Pressure Compensator Over Ride / without Brake Pressure Defeat

Hydraulic schematic

Option KHKA

Hydraulic actuator X1 Non-pressurized = min. displacement. Full-pressurized = max. displacement.

Where:

А, В	Main pressure lines
L1, L2	Drain lines
M4, M5	Gauge port servo pressure
MA, MB	Gauge port system pressure
XA, XB	Control pressure ports brake pressure defeat
X1	Control pressure port
Ν	Speed sensor (optional)

Displacement (%) versus Input Command (bar)

- **2** = Control ramp, 100% 0% (17.5 bar [254 psi])
- **3** = Control start setting range
- **4** = PCOR start setting range

Grey area = Intended to be used for zero degree capability.

Control start setting range (pressure above case pressure)		
p _{start} (possible settings per MMC adjustable)	2 to 30 bar [29 to 435 psi]	
P _{max allowable} Control start setting + 50 bar [725 psi]		
Control ramp		
From 100% to 20% displacement	14 bar [203 psi]	
From 100% to 0% displacement	17.5 bar [254 psi]	

Formulas to calculate start and end input command

Control type	Input command (bar)	% displacement	All sizes (bar)
	Start input command	from 100%	$p_{start} \pm 0.5$
кн		from y% max.	$(1 - V_{gy}/V_{gmax}) \times 17.5 + p_{start} \pm 0.5$
NI	End input command	at 0%	p _{start} + 17.5 ± 2.5
		at x% min.	$(1 - V_{gx}/V_{gmax}) \times 17.5 + p_{start} \pm 2.5$

Where:

V_{gmax} Maximum, theoretic possible motor displacement per revolution (cm³/rev)

V_{gx} Minimum displacement setting of desired unit (cm³/rev)

Vgy Maximum displacement setting of desired unit (cm³/rev)

x Minimum displacement (%)

y Maximum displacement (%)

Warning

KHKH option with PCOR and BPD

KH – hydraulic proportional / non-pressurized = min. displacement

KH - with Pressure Compensator Over Ride / with Brake Pressure Defeat (non-pressurized BPD = PCOR active port not defined without pilot pressure difference on XA or XB)

Hydraulic schematic

Option KHKH

Hydraulic actuator X1 Non-pressurized = min. displacement. Full-pressurized = max. displacement.

Where:

А, В	Main pressure lines
L1, L2	Drain lines
M4, M5	Gauge port servo pressure
MA, MB	Gauge port system pressure
XA, XB	Control pressure ports brake pressure defeat
X1	Control pressure port
Ν	Speed sensor (optional)

Displacement (%) versus Input Command (bar)

- **3** = Control start setting range
- **4** = PCOR start setting range

Grey area = Intended to be used for zero degree capability.

Control start setting range (pressure above case pressure)		
p _{start} (possible settings per MMC adjustable)	2 to 30 bar [29 to 435 psi]	
P _{max allowable} Control start setting + 50 bar [725 psi]		
Control ramp		
Control ramp		
Control ramp From 100% to 20% displacement	14 bar [203 psi]	

Formulas to calculate start and end input command

Control type	Input command (bar)	% displacement	All sizes (bar)
	Start input command	from 100%	$p_{start} \pm 0.5$
DH		from y% max.	$(1 - V_{gy}/V_{gmax}) \times 17.5 + p_{start} \pm 0.5$
	End input command	at 0%	p _{start} + 17.5 ± 2.5
		at x% min.	$(1 - V_{gx}/V_{gmax}) \times 17.5 + p_{start} \pm 2.5$

Where:

Vgmax Maximum, theoretic possible motor displacement per revolution (cm³/rev)

- **V**_{ax} Minimum displacement setting of desired unit (cm³/rev)
- V_{gy} Maximum displacement setting of desired unit (cm³/rev)
- **x** Minimum displacement (%)
- y Maximum displacement (%)

Pressure Compensator OverRide (PCOR) with Brake Pressure Defeat (BPD) configuration

A brake pressure defeat (BPD) shuttle valve ahead of the pressure compensator prevents operation in the deceleration direction (when motor is running in pump mode). This is designed to prevent rapid or uncontrolled deceleration while the vehicle/machine is slowing down.

Pressure compensator override with brake pressure defeat is mainly used in systems with pumps having electric or hydraulic proportional controls or automotive controls.

The brake pressure defeat must be controlled by a 2-line external signal based on direction of motor rotation, see the following table:

Pressure Compensator OverRide (PCOR) operation
--

Motor rotation	High pressure port	Control pressure on port ¹⁾	PCOR function
CW	A	ХА	no
CW	A	ХВ	yes
ссw	В	ХА	yes
ссw	В	ХВ	no

¹⁾ Differential control pressure between ports XA and XB: $p_{min} = 2.5$ bar [36 psi] and $p_{max} = 50$ bar [725 psi]

🛕 Warning

HEHE option

HE – hydraulic two-position control, default (without control pressure) = max. disp. / external control pressure supply

HE - without PCOR / without BPD, internal servo pressure supply

Where:

А, В	Main pressure lines
L1, L2	Drain lines
M4, M5	Gauge port servo pressure
MA, MB	Gauge port system pressure
X1	Control pressure port
Ν	Speed sensor (optional)

Control pressure X1

Non-pressurized = max. displacement. Pressurized = min. displacement.

Control pressure > 12 bar [174 psi] to ensure minimum displacement (above case pressure) Control pressure < 0.9 bar [13 psi] to ensure maximum displacement (above case pressure)

Maximum control pressure: 100 bar [1450 psi]

12 bar [174 psi]

P301 332

(2)

Where:

- 1 Min. displacement
- 2 Max. displacement

HFHF option

HF – hydraulic two-position control, non-pressurized = minimum displacement / external control pressure supply

HF - without PCOR / without BPD, internal servo pressure supply

Hydraulic schematic

Where:

А, В	Main pressure lines
L1, L2	Drain lines
M4, M5	Gauge port servo pressure
MA, MB	Gauge port system pressure
X1	Control pressure port
N	Speed sensor (optional)

Control pressure X1

Non-pressurized = Minimum displacement. Pressurized = Maximum displacement.

Control pressure > 12 bar [174 psi] to ensure maximum displacement (above case pressure) Control pressure < 0.9 bar [13 psi] to ensure minimum displacement (above case pressure)

Maximum control pressure: 100 bar [1450 psi]

Where:

1 Maximum displacement

2 Minimum displacement

THHA option with PCOR

TH - hydraulic two-position control, non-pressurized = min. displacement / external pressure supply

HA – with Pressure Compensator Over Ride, without BPD

Hydraulic actuator X1

Non-pressurized = min. displacement. Full-pressurized = max. displacement.

Max. pressure for activation = 35 bar above motor case pressure

Max. pressure at non-pressurized control port X1 = case pressure

Displacement versus PCOR pressure

- 1 Maximum displacement
- 2 Minimum displacement
- 3 Start setting range

A Warning

THHB option with PCOR and hydraulic BPD

TH – hydraulic two-position control, non-pressurized = min. displacement/external pressure supply

HB – with Pressure Compensator Over Ride, with hydraulic BPD

MB	XB X1 M4 M5 P005951
А, В	Main pressure lines
L1, L2	Drain lines
M4, M5	Gauge port servo pressure
MA, MB	Gauge port system pressure
XA, XB	Control pressure ports brake pressure defeat
X1	Control pressure port
Ν	Speed sensor (optional)

Hydraulic actuator X1

Non-pressurized = min. displacement.

Pressurized = max. displacement.

Min. pressure for activation = 10 bar above case pressure

Max. pressure for activation = 35 bar above motor case pressure

Max. pressure at non-pressurized control port X1 = case pressure

Displacement versus PCOR pressure

- Maximum displacement
 Minimum displacement
- 3 Start setting range

Pressure Compensator OverRide with Brake Pressure Defeat configuration

A brake pressure defeat (BPD) shuttle valve ahead of the pressure compensator prevents operation in the deceleration direction (when motor is running in pump mode). This is designed to prevent rapid or uncontrolled deceleration while the vehicle/machine is slowing down.

Pressure compensator override with brake pressure defeat is mainly used in systems with pumps having electric or hydraulic proportional controls or automotive controls.

The brake pressure defeat must be controlled by a 2-line external signal based on direction of motor rotation, see the following table:

Pressure Compensator OverRide (PCOR) operation

Motor rotation	High pressure port	Control pressure on port ¹⁾	PCOR function
CW	A	ХА	yes
CW	A	ХВ	no
ссw	В	ХА	no
ссw	В	ХВ	yes

¹⁾ Differential control pressure between ports XA and XB: $p_{min} = 2.5$ bar [36 psi] and $p_{max} = 50$ bar [725 psi]

PCOR active port not defined without minimum pressure difference between XA and XB.

A Warning

TADA option

TA – PCOR default; high pressure below PCOR pressure = min. displacement DA - with Pressure Compensator Over Ride / without Brake Pressure Defeat

🛕 Warning

This control is not for use in propel applications.

Hydraulic schematic

Option TADA

Hydraulic actuator X1 Non-pressurized = min. displacement. Pressurized = max. displacement.

Danfoss

Displacement versus PCOR pressure

- 1 Maximum displacement 2 Minimum displacement
- 3 Start setting range

111

TAD1 and TAD2 options with electric BPD

TA – PCOR default; **high pressure below PCOR pressure = min. displacement**

D1 – with PCOR / with electric 12V BPD / de-energized BPD = PCOR active at port A **D2** – with PCOR / with electric 24V BPD / de-energized BPD = PCOR active at port A

Gauge port servo pressure

Speed sensor (optional)

Gauge port system pressure

Displacement versus PCOR pressure

M4, M5

MA, MB

Ν

- 1 Maximum displacement
- 2 Minimum displacement
- 3 Start setting range

Two-position control solenoid C5 (BPD) technical data

Description		12 V	24 V
Supply voltage	Minimum	9.5 V _{DC}	19 V _{DC}
	Max. (continuous)	14.6 V _{DC}	29 V _{DC}
Nominal coil resistance @ 20 °C [68 °F]		8.4 Ω	34.5 Ω
Input current	Recommended	1050 mA	500 mA

Description		12 V	24 V		
IP Rating	IEC 60 529	IP 67 IP 69K with mating connector			
	DIN 40 050, part 9				
Bi-directional diode	Bi-directional diode		yes		
Connector color	Connector color		Black		

TAG1 and TAG2 options

TA – PCOR default; High pressure below PCOR pressure = min. displacement

- G1 with PCOR / with electric 12 V BPD / de-energized BPD = PCOR active at port B
- **G2** with PCOR / with electric 24 V BPD / de-energized BPD = PCOR active at port B

Hydraulic schematic

Option TAG1, TAG2

Displacement versus PCOR pressure

- 1 Maximum displacement 2 Minimum displacement
- 3 Start setting range

Default: High pressure below PCOR pressure = min. displacement

SAE flange design – option L* (proportional control)

P006 038

Axial and radial ports dimensions, mm [in]

Callout	Size 060	Size 080	Size 110	Size 160	Size 210	Size 250
AA	272.3 [10.72]	289.9 [11.41]	316.4 [12.46]	343.6 [13.53]	368.4 [14.5]	387 [15.24]
AB	164.7 [6.48]	170.6 [6.72]	175.0 [6.89]	183.8 [7.24]	190.9 [7.52]	197 [7.76]
AC	167.5 [6.59]	179.9 [7.08]	196.9 [7.75]	219.7 [8.65]	232.6 [9.16]	239 [9.41]
BA	204.8 [8.06]	218.8 [8.61]	240.3 [9.46]	263.9 [10.39]	288.1 [11.34]	302 [11.89]
BB	32.3 [1.27]	34.7 [1.37]	37.5 [1.49]	42.0 [1.65]	46.4 [1.83]	48 [1.89]
BC	74.4 [2.93]	78.4 [3.09]	88.9 [3.50]	99.9 [3.93]	108.2 [4.26]	108 [4.25]
BD	191.0 [7.52]	203.9 [8.03]	226.9 [8.93]	247.9 [9.76]	268.3 [10.56]	284 [11.18]
BE	84.0 [3.30]	92.4 [3.64]	102.5 [4.04]	115.4 [4.54]	123.5 [4.86]	127 [5.00]
BH	204.8 [8.06]	218.8 [8.61]	240.3 [9.46]	263.9 [10.39]	288.1 [11.34]	302 [11.89]
BJ	32.3 [1.27]	34.7 [1.37]	37.5 [1.48]	42.0 [1.65]	46.4 [1.83]	48 [1.89]
BK	69.5 [2.74]	75.2 [2.96]	85.0 [3.35]	96.0 [3.78]	104.3 [4.11]	108 [4.25]
BL	50.8 [2.00]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]	66.6 [2.62]	66.6 [2.62]
BM	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]	31.8 [1.25]	31.8 [1.25]
CA	243.7 [9.59]	258.7 [10.19]	282.6 [11.13]	306.9 [12.08]	327.9 [12.91]	345 [13.58]
СВ	43.4 [1.71]	46.2 [1.82]	49.6 [1.95]	54.4 [2.14]	57.8 [2.28]	60 [2.36]
СС	48 [1.89]	50 [1.97]	50 [1.97]	60 [2.36]	65 [2.56]	65 [2.56]
CD	50.8 [2.00]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]	66.6 [2.62]	66.6 [2.62]
CE	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]	31.8 [1.25]	31.8 [1.25]
CF	69.5 [2.74]	67.7 [2.67]	95.5 [3.76]	86.4 [3.40]	98.9 [3.89]	107 [4.21]
CG	85.8 [3.38]	90 [3.54]	96 [3.78]	102.2 [4.02]	108.5 [4.27]	112 [4.41]
СН	18 [0.71]	17 [0.67]	21 [0.83]	23 [0.91]	25 [0.98]	25 [0.98]
CJ	92.5 [3.64]	104 [4.09]	119.5 [4.70]	122.8 [4.83]	136.3 [5.37]	141.5 [5.57]
СК	70 [2.76]	75 [2.95]	83 [3.27]	96.5 [3.80]	103.5 [4.07]	107.5 [4.23]
CL	83.4 [3.28]	89.3 [3.52]	101.3 [3.99]	107.7 [4.24]	116.9 [4.6]	124 [4.88]
СМ	89.3 [3.52]	93.7 [3.69]	97.2 [3.83]	105.6 [4.16]	111.2 [4.38]	130 [5.12]
CN	244.8 [9.64]	258.7 [10.19]	283.6 [11.17]	307.9 [12.12]	328.9 [12.95]	346 [12.83]
СО	43.7 [1.72]	46.2 [1.82]	49.9 [1.96]	54.6 [2.15]	48.1 [1.89]	61 [2.4]
СР	48 [1.89]	50 [1.97]	50 [1.97]	60 [2.36]	65 [2.56]	65 [2.56]
α	17°	17°	19°	17°	17°	17°

For further detailed information about SAE ports dimensions see the *SAE flange design ports per ISO 11* 926-1 on page 99.

Legend:

- 1 Loop flushing relief valve
- 2 Loop flushing shuttle spool
- 3 Speed sensor

- 4 Minimum angle stop adjustment
- 5 Connector: DEUTSCH DT04-2P
- **6** Alternate position of case drain port

9

Flange and housing dimensions

SAE flange design – option M* (proportional control)

MA

P006 040

۲

۲

ĊР

Axial and radial ports dimensions, mm [in]

Measure	Size 060	Size 080	Size 110	Size 160	Size 210	Size 250
AA	265.0 [10.43]	283.2 [11.15]	311.0 [12.24]	339.7 [13.37]	363.9 [14.33]	381.0 [15.00]
АВ	114.7 [4.52]	119.4 [4.70]	130.8 [5.15]	138.2 [5.44]	145.5 [5.73]	152.0 [5.98]
AC	224.2 [8.83]	235.7 [9.28]	247.2 [9.73]	265.0 [10.43]	279.4 [11]	290.0 [11.42]
BA	204.8 [8.06]	218.8 [8.61]	240.3 [9.46]	263.9 [10.39]	288.1 [11.34]	302.0 [11.89]
BB	32.3 [1.27]	34.7 [1.37]	37.5 [1.48]	42.0 [1.65]	46.4 [1.83]	48.0 [1.89]
вс	74.4 [2.93]	78.4 [3.09]	88.9 [3.50]	99.9 [3.93]	108.2 [4.26]	108.0 [4.25]
BF	220.5 [8.68]	236.7 [9.32]	263.4 [10.37]	289.2 [11.39]	312.1 [12.29]	329.0 [12.95]
BG	18.9 [0.74]	22.0 [0.87]	24.8 [0.98]	28.6 [1.13]	29.5 [1.16]	28.0 [1.1]
BH	204.7 [8.06]	218.8 [8.61]	240.3 [9.46]	263.9 [10.39]	288.1 [11.34]	302.0 [11.89]
BJ	32.3 [1.27]	34.7 [1.37]	37.5 [1.48]	42.0 [1.65]	46.4 [1.83]	48.0 [1.89]
ВК	69.5 [2.74]	75.2 [2.96]	85.0 [3.35]	96.0 [3.78]	104.3 [4.11]	108.0 [4.25]
BL	50.8 [2.00]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]	66.6 [2.62]	66.6 [2.62]
ВМ	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]	31.8 [1.25]	31.8 [1.25]
CA	243.7 [9.59]	258.7 [10.19]	282.6 [11.13]	306.9 [12.08]	327.9 [12.91]	345.0 [13.58]
СВ	43.4 [1.71]	46.2 [1.82]	49.6 [1.95]	54.4 [2.14]	57.8 [2.28]	60.0 [2.36]
сс	48.0 [1.89]	50.0 [1.97]	50.0 [1.97]	60.0 [2.36]	65 [2.56]	65.0 [2.56]
CD	50.8 [2.00]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]	66.6 [2.62]	66.6 [2.62]
CE	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]	31.8 [1.25]	31.8 [1.25]
CF	69.5 [2.74]	67.7 [2.67]	95.5 [3.76]	86.4 [3.40]	98.9 [3.89]	107.0 [4.21]
CG	85.8 [3.38]	90.0 [3.54]	96.0 [3.78]	102.2 [4.02]	108.5 [4.27]	112.0 [4.41]
СН	18.0 [0.71]	17.0 [0.67]	21.0 [0.83]	23.0 [0.91]	25 [0.98]	25.0 [0.98]
CJ	92.5 [3.64]	104.0 [4.09]	119.5 [4.70]	122.8 [4.83]	136.3 [5.37]	141.5 [5.57]
СК	70.0 [2.76]	75.0 [2.95]	83.0 [3.27]	96.5 [3.80]	103.5 [4.07]	107.5 [4.23]
CL	83.4 [3.28]	89.3 [3.52]	101.3 [3.99]	107.7 [4.24]	116.9 [4.6]	124.0 [4.88]
СМ	89.3 [3.52]	93.7 [3.69]	97.2 [3.83]	105.6 [4.16]	111.2 [4.38]	130.0 [5.12]
CN	244.8 [9.64]	258.7 [10.19]	283.6 [11.17]	307.9 [12.12]	328.9 [12.95]	346.0 [12.83]
со	43.7 [1.72]	46.2 [1.82]	49.9 [1.96]	54.6 [2.15]	58.1 [2.29]	61.0 [2.4]
СР	48.0 [1.89]	50.0 [1.97]	50.0 [1.97]	60.0 [2.36]	65 [2.56]	65.0 [2.56]
α	17°	17°	19°	17°	17°	17°

For further detailed information about SAE ports dimensions see the SAE flange design ports per ISO 11 926-1 on page 99.

Legend: 1 Loop flushing relief valve 2 Loop flushing shuttle spool 3 Speed sensor

4 Minimum angle stop adjustment

5 Connector: DEUTSCH DT04-2P

6 Alternate position of case drain port

SAE flange design – options T* D* and P* D* (two-position control, PCOR, electric BPD)

Legend: 1 Loop flushing relief valve 2 Loop flushing shuttle spool 3 Speed sensor 4 Minimum angle stop adjustment5 *Connector*: DEUTSCH DT04-2P6 Alternate position of case drain port

Axial and radial ports dimensions, mm [in]

Code	Size 060	Size 080	Size 110	Size 160	Size 210	Size 250
AA	243 [9.57]	261.4 [10.29]	288 [11.34]	314.9 [12.4]	341.1 [13.43]	359 [14.13]
AB (without min. adjustment screw)	114.7 [4.52]	119.4 [4.7]	130.8 [5.15]	138.2 [5.44]	145.5 [5.73]	152 [5.98]
AB (MB0)	86.5 [3.41]	92.2 [3.63]	102.6 [4.04]	109.8 [4.32]	130 [5.12]	145.7 [5.74]
AC	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]	267 [10.51]
AD	112.7 [4.44]	112.7 [4.44]	112.7 [4.44]	112.7 [4.44]	112.7 [4.44]	112.7 [4.44]
AE	max 67.3 [2.65]					
AF	254.3 [9.66]	263.5 [10.37]	290.4 [11.43]	314.9 [12.39]	341.1 [13.43]	359 [14.13]
ВА	205.1 [8.07]	219.1 [8.63]	240.3 [9.46]	263.9 [10.39]	288.1 [11.34]	302 [11.89]
BB	32.3 [1.27]	34.7 [1.37]	37.5 [1.49]	42 [1.65]	46.4 [1.83]	48 [1.89]
ВС	74.4 [2.93]	78.4 [3.09]	88.9 [3.5]	99.9 [3.93]	108.2 [4.26]	108 [4.25]
BD	189.8 [7.47]	198 [7.8]	220 [8.66]	243.9 [9.6]	268 [10.55]	281 [11.06]
BE	83.8 [3.30]	90.6 [3.57]	100.9 [3.97]	111.7 [4.4]	120.8 [4.76]	125 [4.92]
вн	205.1 [8.07]	218.8 [8.61]	240.3 [9.46]	263.9 [10.39]	288.1 [11.34]	302 [11.89]
BJ	32.3 [1.27]	34.7 [1.37]	37.5 [1.48]	42.0 [1.65]	46.4 [1.83]	48 [1.89]
ВК	69.5 [2.74]	75.2 [2.96]	85.0 [3.35]	96.0 [3.78]	104.3 [4.11]	108 [4.25]
BL	50.8 [2.00]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]	66.6 [2.62]	66.6 [2.62]
ВМ	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]	31.8 [1.25]	31.8 [1.25]
CA	233.8 [9.2]	250.2 [9.85]	276.8 [10.9]	298.9 [11.78]	323.1 [12.72]	338 [13.31]
СВ	40.6 [1.6]	43.7 [1.72]	48 [1.89]	52.1 [2.05]	56.1 [2.21]	59 [2.32]
сс	48 [1.89]	50 [1.97]	50 [1.97]	60 [2.36]	65 [2.56]	65 [2.56]
CD	50.8 [2.00]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]	66.6 [2.62]	66.6 [2.62]
CE	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]	31.8 [1.25]	31.8 [1.25]
CF	69.5 [2.74]	67.7 [2.67]	95.5 [3.76]	86.4 [3.40]	98.9 [3.89]	107 [4.21]
CG	85.8 [3.38]	90 [3.54]	96 [3.78]	102.2 [4.02]	108.5 [4.27]	112 [4.41]
СН	18 [0.71]	17 [0.67]	21 [0.83]	23 [0.91]	25 [0.98]	25 [0.98]
CI	92.5 [3.64]	104 [4.09]	119.5 [4.70]	122.8 [4.83]	136.3 [5.37]	141.5 [5.57]
СК	70 [2.76]	75 [2.95]	83 [3.27]	96.5 [3.80]	103.5 [4.07]	107.5 [4.23]
CL	83.4 [3.28]	89.3 [3.52]	101.3 [3.99]	107.7 [4.24]	116.9 [4.6]	124 [4.88]
СМ	89.3 [3.52]	93.7 [3.69]	97.2 [3.83]	105.6 [4.16]	111.2 [4.38]	130 [5.12]
CN	234.1 [9.22]	250.6 [9.87]	277.8 [10.94]	298.9 [11.78]	323.8 [12.75]	339 [13.35]
со	40.7 [1.6]	43.8 [1.72]	48.2 [1.9]	52.3 [2.06]	56.6 [2.23]	59 [2.32]
СР	48 [1.89]	50 [1.97]	50 [1.97]	60 [2.36]	65 [2.56]	65 [2.56]
α	17°	17°	19°	17°	17°	17°

For further detailed information about SAE ports dimensions see the *SAE flange design ports per ISO 11* 926-1 on page 99.

SAE flange design ports per ISO 11 926-1

Ports dimensions per ISO 11 926-1; mm [in]

Ports	Size 060	Size 080	Size 110	Size 160	Size 210	Size 250
L1, L2 Case drain	⁷ / ₈ -14; Ø42	[1.65] ¹⁾	1 ¼ ₁₆ -12; Ø4	48.5 [1.91] ¹⁾	1 ⁵ ⁄ ₁₆ -12; Ø	50.1 [1.97] ¹⁾
A, B Split flange boss system	DN 19 (Ø19 mm) ²⁾ M10x1.5; 18 [0.71]		DN 25 (Ø25 mm) ²⁾ DN 32 (Ø32 mm) ²⁾ M12x1.75; 23 [0.91] M12x1.75; 23 [0.91]			
MA, MB (axial HP ports) System pressure A, B gauge ³⁾	9/ ₁₆ -18; Ø25.0 [0.984] ¹⁾					
MA, MB (radial HP ports) System pressure A, B gauge ³⁾	7/8-14 1 1/16-12; Ø42.0 [1.65]1) Ø34.0 [1.34] 1) 1					
M4, M5 Servo pressure supply gauge	⁹ / ₁₆ -18; Ø25.0 [0.984] ¹⁾					

¹⁾ Max. clearance DIA for fitting.

²⁾ Typ 1, 40 MPa series per ISO 6162. Full thread depth.

³⁾ Countersink may be deeper that specified in the standard.

For further detailed information about SAE dimensions see:

- SAE flange design option L* (proportional control) on page 93
- SAE flange design option M* (proportional control) on page 95
- SAE flange design options T* D* and P* D* (two-position control, PCOR, electric BPD) on page 97

SAE mounting flange design per ISO 3019/1

P003 445

1. Coupling must not protrude beyong this surface

2. Maximum screw head space other side

SAE flange dimensions mm [in]

Measure	Size 060/080 – Flange 127-4	Size 110/160 – Flange 152-4	Size 210/250 – Flange 165-4
ØB	126.975 [4.999]	152.375 [5.999]	165.075 [6.5]
ØF	80 [3.15]	86 [3.386]	100 [3.937]
ØG	62 [2.441]	72 [2.835]	72 [2.835]
DE	6.4 [0.252]	6.0 [0.236]	6.4 [0.252]
DH	12.5 [0.492]	12.5 [0.492]	15.65 [0.62]
נס	18 [0.709] - <u>size 060</u> 19 [0.748] - <u>size 080</u>	22.0 [0.866]	25 [0.98]
DK	142.5 [5.61]	200 [7.874]	260.0 [10.24]
DL	57.3 [2.256]	80.8 [3.181]	112.2 [4.42]
DM	19.5 [0.768]	30 [1.181]	30 [1.181]
DN	14.3 [0.563]	20.6 [0.811]	20.6 [0.811]

Shaft options overview (Number of teeth)

Size	AN/AS (14T)	BN/BS (21T)	CN/CS (23T)	DN/DS (27T)	EN/ES (13T)	FN/FS (15T)
060	•	•	_	_	_	_
080	•	•	•	—	—	—
110	—	—	—	•	•	—
160	—	—	—	•	•	•
210	—	_	_	•	—	•
250	—	—	_	•	—	•

= available option, – = not available option

Shaft option	EN/ES	AN/AS	FN/FS	BN/BS	CN/CS	DN/DS
Teeth	13	14	15	21	23	27
Module	8/16	12/24	8/16	16/32	16/32	16/32
Pitch-Ø	41.275 [1.625]	29.633 [1.167]	47.625 [1.875]	33.337 [1.312]	36.513 [1.438]	42.862 [1.687]
Spline		AN	SI B92.1-1970 CI	ass 5 flat root side	e fit	
ØA	43.6 [1.717]	31.2 [1.228]	49.96 [1.966]	34.4 [1.315]	37.61 [1.48]	44.0 [1.732]
ØН	55.0 [2.165]	44.5 [1.752]	55.0 [2.165]	44.5 [1.752]	44.5 [1.752]	55.0 [2.165]
۵۱	36.0 [1.417]	25.8 [1.016]	42.2 [1.661]	30.0 [1.181]	32.0 [1.260]	39.6 [1.559]
DA	55.0 [2.165]	37.5 [1.476]	53.0 [2.087]	37.5 [1.476]	37.5 [1.476]	55.0 [2.165]
DB	67.0 [2.638]	47.5 [1.870]	67.0 [2.638]	47.5 [1.870]	47.5 [1.870]	67.0 [2.638]
DC	75.0 [2.953] 75.4 [2.968] [*]	55.5 [2.185]	75.0 [2.953] 75.4 [2.968] [*]	55.5 [2.185]	55.5 [2.185]	75.0 [2.953] 75.4 [2.968] [*]
R	3.0 [0.118]	3.0 [0.118]	3.0 [0.118]	3.0 [0.118]	3.0 [0.118]	3.0 [0.118]
v	M12	M10	M16	M10	M12	M16
Angle		Pressure angle 30°				

Shaft dimensions; mm [in]

* Size 160 only

For DIN 5480 shaft used in combination with SAE flanges, please contact your local Danfoss Power Solutions representative.

O-ring groove dimensions

O-ring groove dimensions; mm [in]

Measure	Size 060/080	Size 110/160	Size 210/250
ØK	122.3 [4.81]	147.7 [5.81]	160.4 [6.31]
ØL	127.0 [5.0]	152.4 [6.0]	165.1 [6.5]
DD	4.45 [0.175]	4.45 [0.175]	6.65 [0.262]
DE	8.65 [0.341]	8.65 [0.341]	10.85 [0.427]
O-ring [*]	3 x 116	3 x 142	3 x 154
Material Nr.	930511	729285	729319

* Recommended O-ring. It is not part of the shipment.

An O-ring groove was added to the SAE housing in September 2013 to facilitate sealing between the motor and mating structures. Motor installations will vary by application. It is the customer's responsibility to evaluate each application for proper mounting and sealing.

9

Flange and housing dimensions

DIN flange design – option L* (proportional control)

Radial ports

Axial and radial ports dimensions, mm [in]

Measure	Size 060	Size 080	Size 110	Size 160	Size 210	Size 250
AA	247.8 [9.76]	265.9 [10.47]	283.9 [11.18]	311.7 [12.27]	336.6 [13.25]	345.2 [13.60]
АВ	164.7 [6.48]	170.6 [6.72]	175.0 [6.89]	183.8 [7.24]	190.9 [7.52]	197.0 [7.76]
AC	167.5 [6.59]	179.9 [7.08]	196.9 [7.75]	219.7 [8.65]	232.6 [9.16]	238.4 [9.39]
BA	180.3 [7.10]	194.8 [7.67]	207.8 [8.18]	232.0 [9.13]	256.1 [10.08]	260.0 [10.24]
BB	32.3 [1.27]	34.7 [1.37]	37.5 [1.49]	42.0 [1.65]	46.4 [1.83]	48.1 [1.89]
вс	74.4 [2.93]	78.4 [3.09]	88.9 [3.50]	99.9 [3.93]	108.2 [4.26]	108.8 [4.28]
BD	165.5 [6.56]	179.9 [7.08]	194.4 [7.65]	216.0 [8.50]	236.3 [9.3]	242.2 [9.54]
BE	84.0 [3.30]	92.4 [3.64]	102.5 [4.04]	115.4 [4.54]	123.5 [4.86]	126.9 [5.00]
BH	180.3 [7.10]	194.8 [7.67]	207.8 [8.18]	232.0 [9.13]	256.1 [10.08]	260.0 [10.24]
BJ	32.3 [1.27]	34.7 [1.37]	37.5 [1.48]	42.0 [1.65]	46.4 [1.83]	48.1 [1.89]
ВК	69.5 [2.74]	75.2 [2.96]	85.0 [3.35]	96.0 [3.78]	104.3 [4.11]	107.8 [4.24]
BL	50.8 [2.00]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]	66.6 [2.62]	66.6 [2.62]
ВМ	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]	31.8 [1.25]	31.8 [1.25]
CA	219.2 [8.63]	234.7 [9.24]	250.1 [9.84]	275.0 [10.83]	295.9 [11.65]	302.6 [11.91]
СВ	43.4 [1.71]	46.2 [1.82]	49.6 [1.95]	54.4 [2.14]	57.8 [2.28]	60.3 [2.37]
сс	48.0 [1.89]	50.0 [1.97]	50.0 [1.97]	60.0 [2.36]	65 [2.56]	65.0 [2.56]
CD	50.8 [2.00]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]	66.6 [2.62]	66.6 [2.62]
CE	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]	31.8 [1.25]	31.8 [1.25]
CF	45.0 [1.77]	46.0 [1.81]	63.0 [2.48]	54.5 [2.15]	66.9 [2.63]	65.0 [2.56]
CG	85.8 [3.38]	90.0 [3.54]	96.0 [3.78]	102.2 [4.02]	108.5 [4.27]	112.2 [4.42]
СН	18.0 [0.71]	22.0 [0.87]	21.0 [0.83]	23.0 [0.91]	25 [0.98]	25.0 [0.98]
CI	68.0 [2.68]	80.0 [3.15]	87.0 [3.43]	90.9 [3.58]	104.3 [4.11]	99.4 [3.91]
СК	70.0 [2.76]	75.0 [2.95]	83.0 [3.27]	96.5 [3.80]	103.5 [4.07]	107.5 [4.23]
CL	58.9 [2.32]	65.3 [2.57]	68.8 [2.71]	75.8 [2.98]	84.9 [3.34]	82.3 [3.24]
СМ	89.3 [3.52]	93.7 [3.69]	97.2 [3.83]	105.6 [4.16]	111.2 [4.38]	118.0 [4.65]
CN	220.3 [8.67]	234.7 [9.24]	251.1 [9.89]	276.0 [10.87]	296.9 [11.69]	303.6 [11.95]
со	43.7 [1.72]	46.2 [1.82]	49.9 [1.96]	54.6 [2.15]	58.1 [2.29]	60.6 [2.39]
СР	48.0 [1.89]	50.0 [1.97]	50.0 [1.97]	60.0 [2.36]	65 [2.56]	65.0 [2.56]
α	17°	17°	19°	17°	17°	17°

For further detailed information about DIN ports dimensions see the *DIN flange design ports per ISO 11 926-1* on page 108.

Legend: 1 Loop flushing relief valve 2 Loop flushing shuttle spool 3 Speed sensor

4 Minimum angle stop adjustment5 *Connector*: DEUTSCH DT04-2P6 Alternate position of case drain port

DIN flange design – option M* (proportional control)

Ì

(3

S

ŧ

Æ

P006 045

9

Radial ports

Axial and radial ports dimensions, mm [in]

Measure	Size 060	Size 080	Size 110	Size 160	Size 210	Size 250
AA	240.5 [9.47]	259.2 [10.20]	278.5 [10.96]	307.8 [12.12]	331.9 [13.07]	339.3 [13.36]
АВ	114.7 [4.52]	119.4 [4.70]	130.8 [5.15]	138.2 [5.44]	145.5 [5.73]	151.7 [5.97]
AC	224.2 [8.83]	235.7 [9.28]	247.2 [9.73]	265.0 [10.43]	279.4 [11]	290.1 [11.42]
BA	180.3 [7.10]	194.8 [7.67]	207.8 [8.18]	232.0 [9.13]	256.1 [10.08]	260.0 [10.24]
BB	32.3 [1.27]	34.7 [1.37]	37.5 [1.48]	42.0 [1.65]	46.4 [1.83]	48.1 [1.89]
вс	74.4 [2.93]	78.4 [3.09]	88.9 [3.50]	99.0 [3.93]	108.2 [4.26]	108.8 [4.28]
BF	196.0 [7.72]	212.7 [8.38]	230.9 [9.90]	257.3 [10.13]	280.1 [11.03]	286.7 [11.29]
BG	18.9 [0.74]	22.0 [0.87]	24.8 [0.98]	28.6 [1.13]	29.5 [1.16]	28.2 [1.11]
вн	180.3 [7.10]	194.8 [7.67]	207.8 [8.18]	232.0 [9.13]	256.1 [10.08]	260.0 [10.24]
BJ	32.3 [1.27]	34.7 [1.37]	37.5 [1.48]	42.0 [1.65]	46.4 [1.83]	48.1 [1.89]
ВК	69.5 [2.74]	75.2 [2.96]	85.0 [3.35]	96.0 [3.78]	104.3 [4.11]	107.8 [4.24]
BL	50.8 [2.00]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]	66.6 [2.62]	66.6 [2.62]
вм	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]	31.8 [1.25]	31.8 [1.25]
CA	219.2 [8.63]	234.7 [9.24]	250.1 [9.85]	275.0 [10.83]	295.9 [11.65]	202.6 [11.91]
СВ	43.4 [1.71]	46.2 [1.82]	49.6 [1.95]	54.4 [2.14]	57.8 [2.28]	60.3 [2.37]
сс	48.0 [1.89]	50.0 [1.97]	50.0 [1.97]	60.0 [2.36]	65 [2.56]	65.0 [2.56]
CD	50.8 [2.0]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]	66.6 [2.62]	66.6 [2.62]
CE	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]	31.8 [1.25]	31.8 [1.25]
CF	45.0 [1.77]	46.0 [1.81]	63.0 [2.48]	54.5 [2.15]	66.9 [2.63]	65.0 [2.56]
CG	85.8 [3.38]	90.0 [3.54]	96.0 [3.78]	102.2 [4.02]	108.5 [4.27]	112.2 [4.42]
СН	18.0 [0.71]	22.0 [0.87]	21.0 [0.83]	23.0 [0.91]	25.0 [0.98]	25.0 [0.98]
CJ	68.0 [2.68]	80.0 [3.15]	87.0 [3.43]	90.9 [3.58]	104.3 [4.11]	99.4 [3.91]
СК	70.0 [2.76]	75.0 [2.95]	83.0 [3.27]	96.5 [3.80]	103.5 [4.07]	107.5 [4.23]
CL	58.9 [2.32]	65.3 [2.57]	68.8 [2.71]	75.8 [2.98]	84.9 [3.34]	82.3 [3.24]
СМ	89.3 [3.52]	93.7 [3.69]	97.2 [3.83]	105.6 [4.16]	111.2 [4.38]	118.0 [4.65]
CN	220.3 [8.67]	234.7 [9.24]	251.1 [9.89]	276.0 [10.87]	296.9 [11.69]	303.6 [11.95]
со	43.7 [1.72]	46.2 [1.82]	49.9 [1.96]	54.6 [2.15]	58.1 [2.29]	60.6 [2.39]
СР	48.0 [1.89]	50.0 [1.97]	50.0 [1.97]	60.0 [2.36]	65.0 [2.56]	65.0 [2.56]
α	17°	17°	19°	17°	17°	17°

For further detailed information about DIN ports dimensions see the *DIN flange design ports per ISO 11 926-1* on page 108.

<u>Legend:</u>

- Loop flushing relief valve
 Loop flushing shuttle spool
- 3 Speed sensor

4 Minimum angle stop adjustment5 *Connector*: DEUTSCH DT04-2P6 Alternate position of case drain port

DIN flange design – options T* D* and P* D* (two-position control, PCOR, electric BPD)

γ

Radial ports

Axial and radial ports dimensions, mm [in]

Callout	Size 060	Size 080	Size 110	Size 160	Size 210	Size 250
AA	219.1 [8.63]	237.4 [9.35]	255.5 [10.06]	283.0 [11.14]	308.9 [12.16]	316.9 [12.59]
АВ	114.7 [4.52]	119.4 [4.70]	130.8 [5.15]	138.2 [5.44]	145.5 [5.73]	151.7 [5.97]
AB (MB0)	86.5 [3.41]	92.2 [3.63]	102.6 [4.04]	109.8 [4.32]	118 [4.65]	
AC	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]	267.3 [10.52]
AD	112.7 [4.44]	112.7 [4.44]	112.7 [4.44]	112.7 [4.44]	112.7 [4.44]	112.7 [4.44]
AE	67.3 [2.65] max					
AF	220.8 [8.69]	239.5 [9.43]	257.9 [10.15]	283.0 [11.14]	308.9 [12.16]	316.9 [12.48]
BA	180.6 [7.11]	195.1 [7.68]	207.8 [8.18]	232.0 [9.13]	256.1 [10.08]	260.0 [10.24]
BB	32.3 [1.27]	34.7 [1.38]	37.5 [1.48]	42.0 [1.65]	46.4 [1.83]	48.1 [1.89]
вс	74.4 [2.93]	78.0 [3.07]	88.9 [3.50]	99.9 [3.93]	108.2 [4.26]	108.8 [4.28]
BD	165.3 [6.51]	174.0 [6.85]	187.5 [7.38]	212.1 [8.35]	236 [9.29]	238.7 [9.40]
BE	83.8 [3.30]	90.6 [3.54]	100.9 [3.97]	111.7 [4.40]	120.8 [4.76]	125.2 [4.93]
BH	180.6 [7.11]	194.8 [7.67]	207.8 [8.18]	232.0 [9.13]	256.1 [10.08]	260.0 [10.24]
BJ	32.3 [1.27]	34.7 [1.37]	37.5 [1.48]	42.0 [1.65]	46.4 [1.83]	48.1 [1.89]
ВК	69.5 [2.74]	75.2 [2.96]	85.0 [3.35]	96.0 [3.78]	104.3 [4.11]	107.8 [4.24]
BL	50.8 [2.0]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]	66.6 [2.62]	66.6 [2.62]
ВМ	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]	31.8 [1.25]	31.8 [1.25]
CA	209.3 [8.24]	226.2 [8.91]	244.3 [9.62	267.0 [10.51]	291.1 [11.46]	296.6 [11.68]
СВ	40.6 [1.6]	43.7 [1.72]	48.0 [1.89]	52.1 [2.05]	56.1 [2.21]	58.5 [2.30]
сс	48.0 [1.89]	50.0 [1.97]	50.0 [1.97]	60.0 [2.36]	65 [2.56]	65.0 [2.56]
CD	50.8 [2.0]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]	66.6 [2.62]	66.6 [2.62]
CE	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]	31.8 [1.25]	31.8 [1.25]
CF	45.0 [1.77]	46.0 [1.81]	63.0 [2.48]	54.5 [2.15]	66.9 [2.63]	65.0 [2.56]
CG	85.8 [3.38]	90.0 [3.54]	96.0 [3.78]	102.2 [4.02]	108.5 [4.27]	112.2 [4.42]
СН	18.0 [0.71]	22.0 [0.87]	21.0 [0.83]	23.0 [0.91]	25.0 [0.98]	25.0 [0.98]
CJ	68.0 [2.68]	80.0 [3.15]	87.0 [3.43]	90.9 [3.58]	104.3 [4.11]	99.4 [3.91]
СК	70.0 [2.76]	75.0 [2.95]	83.0 [3.27]	96.5 [3.8]	103.5 [4.07]	107.5 [4.23]
CL	58.9 [2.32]	65.3 [2.57]	68.8 [2.71]	75.8 [2.98]	84.9 [3.34]	82.3 [3.24]
СМ	89.3 [3.52]	93.7 [3.69]	97.2 [3.83]	105.6 [4.16]	111.2 [4.38]	118.0 [4.65]
CN	209.6 [8.25]	226.6 [8.92]	245.3 [9.66]	267.9 [10.55]	291.8 [11.49]	297.5 [11.71]
со	40.7 [1.60]	43.8 [1.72]	48.2 [1.90]	52.3 [2.06]	56.6 [2.23]	58.8 [2.31]
СР	48.0 [1.89]	50.0 [1.97]	50.0 [1.97]	60.0 [2.36]	65.0 [2.56]	65.0 [2.56]
α	17°	17°	19°	17°	17°	17°

For further detailed information about DIN ports dimensions see the *DIN flange design ports per ISO 11 926-1* on page 108.

Legend: 1 Loop flushing relief valve 2 Loop flushing shuttle spool 3 Speed sensor

4 Minimum angle stop adjustment5 Connector: DEUTSCH DT04-2P6 Alternate position of case drain port

DIN flange design ports per ISO 11 926-1

Ports dimensions per ISO 11 926-1; mm [in]

Ports	Size 060	Size 080	Size 110	Size 160	Size 210	
L1, L2 Case drain	7/ ₈ -14; Ø42 [1.65] ¹⁾		1 ¹ / ₁₆ -12; Ø48.5 [1.91] ¹⁾		1 ⁵ / ₁₆ -12; Ø50.1 [1.97] ¹⁾	
A, B Split flange boss system	DN 19 (Ø19 mm) ²⁾ M10x1.5; 18 [0.71]		25 mm) ²⁾ ; 23 [0.91]	DN 32 (Ø32 mm) ²⁾ M12x1.75; 23 [0.91]		
MA, MB (axial HP ports) System pressure A, B gauge ³⁾	% ₁₆ -18; Ø25.0 [0.984] ¹⁾					
MA, MB (radial HP ports) System pressure A, B gauge ³⁾	⁷ ⁄ ₈ -14 Ø34.0 [1.34] ¹⁾	1 ¹ / ₁₆ -12; Ø42.0 [1.65] ¹⁾				
M4, M5 Servo pressure supply gauge	% ₁₆ -18; Ø25.0 [0.984] ¹⁾					

¹⁾ Max. clearance DIA for fitting.

²⁾ Typ 1, 40 MPa series per ISO 6162. Full thread depth.

³⁾ Countersink may be deeper that specified in the standard.

For further detailed information about DIN dimensions see:

- DIN flange design option L* (proportional control) on page 102
- DIN flange design option M* (proportional control) on page 104
- DIN flange design options T* D* and P* D* (two-position control, PCOR, electric BPD) on page 106

DIN mounting flange design per ISO 3019/2

- 1. Coupling must not protrude beyond this surface
- 2. Maximum screw head space other side

DIN mounting flange per ISO 3019/2 dimensions, mm [in]

Code	Size 060 125 B4 HL	Size 080 140 B4 HL	Size 110 160 B4 HL	Size 160 180 B4 HL	Size 210 200 B4 HL	Size 250 200 B4 HL
ØB	125.0 [4.921]	140.0 [5.512]	160.0 [6.299]	180.0 [7.087]	200.0 [7.874]	200.0 [7.874]
ØE	72.0 [2.835]	76.6 [3.016]	85.9 [3.382]	98.8 [3.890]	102.0 [4.016]	111.4 [4.386]
ØG	62.0 [2.441]	62.0 [2.441]	72.0 [2.835]	72.0 [2.835]	72.0 [2.835]	72.0 [2.835]
DD	30.0 [1.181]	31.2 [1.228]	39.0 [1.535]	38.8 [1.528]	38.9 [1.531]	48.4 [1.91]
DH	11.2 [0.441]	11.1 [0.437]	10.8 [0.425]	10.1 [0.398]	11.0 [0.433]	11.0 [0.433]
DJ	17.0 [0.669]	19.0 [0.748]	22.2 [0.874]	22.0 [0.866]	25 [0.984]	25 [0.984]
DK	150.0 [5.905]	165.0 [6.496]	190.0 [7.840]	212.0 [8.346]	236.0 [9.291]	236.0 [9.291]
DL	56.6 [2.228]	63.7 [2.509]	70.7 [2.783]	79.2 [3.118]	88.4 [3.480]	88.4 [3.480]
DM	19.5 [0.768]	19.5 [0.768]	30.0 [1.181]	30.0 [1.181]	37.0 [1.457]	37.0 [1.457]
DN	13.5 [0.531]	13.5 [0.531]	17.5 [0.689]	17.5 [0.689]	22 [0.866]	22 [0.866]

Shaft options overview

Size	Shaft option (Number of teeth)					
	GN/GS (14T)	HN/HS (16T)	JN/JS (18T)	KN/KS (21T)	LN/LS (24T)	
060	•	•	—	—	—	
080		•		_	—	
110	-	—			—	
160	-	—	—			
210	-	-	—	—		

 \bullet = available option, – = not available option

1. Coupling must not protrude beyong this surface

2. Maximum screw head space other side

Shaft option Teeth	GN/GS 14	HN/HS 16	JN/JS 18	KN/KS 21	LN/LS 24		
Pitch Ø	28.0 [1.102]	32.0 [1.260]	36.0 [1.417]	42.0 [1.654]	48.0 [1.890]		
Spline ¹⁾	W30x2x30x14x9g	W35x2x30x16x9g	W40x2x30x18x9g	W45x2x30x21x9g	W50x2x30x24x9g		
ØA	29.6 [1.165]	34.6 [1.362]	39.6 [1.559]	44.6 [1.756]	49.6 [1.953]		
ØН	44.5 [1.752]	44.5 [1.752]	44.5 [1.752] 55.0 [2.165] ²⁾	55.0 [2.165]	55.0 [2.165]		
۵ı	25.0 [0.984]	30.0 [1.181]	35.0 [1.378]	40.0 [1.575]	45.0 [1.772]		
DA	27.0 [1.063]	32.0 [1.260]	37.0 [1.457]	42.0 [1.654]	47.0 [1.850]		
DB	35.0 [1.378]	40.0 [1.575]	45.0 [1.772]	50.0 [1.968]	55.0 [2.165]		
DC	67.5 [2.657]	72.0 [2.835]	77.0 [3.031] 85.5 [3.366] ²⁾	90.3 [3.555] 90.5 [3.563] ²⁾	95.3 [3.752]		
R	1.6 [0.063]	1.6 [0.063]	1.6 [0.063] 2.5 [0.098] ²⁾	2.5 [0.098]	1.6 [0.063]		
V	M10	M10	M12	M16	M16		
Angle		Pressure angle 30°					

Shaft dimensions, mm [in]

¹⁾ Spline per DIN 5480; side fit.

²⁾ For size **110** only.

For ANSI B92.1-1970 class 5 shaft used in combination with DIN flanges, please contact your local Danfoss Power Solutions representative.

9

P006 049

Flange and housing dimensions

Cartridge flange design – option L* (proportional control)

Radial ports

МΒ

P006 050

BK

Axial and radial	ports dimensions, mm	[in]
Axiai ana raalai	ponts uniterisions, mm	LIII

Measure	Size 060	Size 080	Size 110	Size 160
AA	188.1 [7.41]	187.5 [7.38]	201.9 [7.95]	229.3 [9.03]
АВ	164.7 [6.48]	170.6 [6.72]	175.0 [6.89]	183.8 [7.24]
AC	167.5 [6.59]	179.9 [7.08]	196.9 [7.75]	219.7 [8.65]
BA	120.6 [4.75]	116.4 [4.58]	125.8 [4.95]	149.6 [5.89]
вв	32.3 [1.27]	34.7 [1.37]	37.5 [1.49]	42.0 [1.65]
вс	74.4 [2.93]	78.4 [3.09]	88.9 [3.50]	99.9 [3.93]
BD	106.8 [4.20]	101.5 [4.00]	112.4 [4.43]	133.6 [5.26]
BE	84.0 [3.30]	92.4 [3.64]	102.5 [4.04]	115.4 [4.54]
BF	43.0 [1.69]	37.0 [1.46]	46.0 [1.81]	64.0 [2.52]
вн	120.6 [4.75]	116.4 [4.58]	125.8 [4.95]	149.6 [5.89]
BJ	32.3 [1.27]	34.7 [1.37]	37.5 [1.48]	42.0 [1.65]
ВК	69.5 [2.74]	75.2 [2.96]	85.0 [3.35]	96.0 [3.78]
BL	50.8 [2.00]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]
ВМ	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]
CA	159.5 [6.28]	156.3 [6.15]	168.1 [6.62]	192.6 [7.58]
СВ	43.4 [1.71]	46.2 [1.82]	49.6 [1.95]	54.4 [2.14]
сс	48.0 [1.89]	50.0 [1.97]	50.0 [1.97]	60.0 [2.36]
CD	50.8 [2.00]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]
CE	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]
CF	32.2 [1.27]	31.0 [1.22]	34.1 [1.34]	51.8 [2.04]
CG	44.0 [1.73]	56.8 [2.24]	55.0 [2.17]	50.0 [1.97]
СН	75.0 [2.95]	78.0 [3.07]	86.0 [3.39]	97.0 [3.82]
CJ	44.2 [1.74]	36.0 [1.42]	38.1 [1.50]	52.8 [2.09]
СК	35.0 [1.38]	46.0 [1.81]	47.9 [1.89]	51.0 [2.01]
CL	26.1 [1.03]	21.5 [0.85]	22.9 [0.90]	25.1 [0.99]
СМ	74.8 [2.94]	74.4 [2.93]	79.0 [3.11]	87.7 [3.45]
CN	160.6 [6.32]	156.3 [6.15]	169.1 [6.66]	193.6 [7.62]
со	43.7 [1.72]	46.2 [1.82]	49.9 [1.96]	54.6 [2.15]
СР	48.0 [1.89]	50.0 [1.97]	50.0 [1.97]	60.0 [2.36]
CR	68.4 [2.69]	68.2 [2.69]	70.4 [2.77]	74.4 [2.93]
α			25°	

For further detailed information about Cartridge ports dimensions see the *Cartridge flange design ports per ISO 11 926-1* on page 117.

Legend: 1 Loop flushing relief valve 2 Loop flushing shuttle spool 3 Speed sensor

4 Minimum angle stop adjustment

- 5 Connector: DEUTSCH DT04-2P
- ${\bf 6}$ Alternate position of case drain port

Cartridge flange design – option M* (proportional control)

Radial ports

Axial and radial	ports dimensions, mm	[in]
Axiai ana raalai	ponts uniterisions, mm	LIII

Measure	Size 060	Size 080	Size 110	Size 160
AA	180.8 [7.12]	180.8 [7.12]	196.5 [7.74]	225.4 [8.87]
АВ	114.7 [4.52]	119.4 [4.70]	130.8 [5.15]	138.2 [5.44]
AC	224.2 [8.83]	235.7 [9.28]	247.2 [9.73]	265.0 [10.43]
ВА	120.6 [4.75]	116.4 [4.58]	125.8 [4.95]	149.6 [5.89]
BB	32.3 [1.27]	34.7 [1.37]	37.5 [1.48]	42.0 [1.65]
вс	74.4 [2.93]	78.4 [3.09]	88.9 [3.50]	99.9 [3.93]
BE	32.0 [1.26]	27.0 [1.06]	36.0 [1.42]	56.0 [2.20]
BF	136.3 [5.37]	134.3 [5.29]	148.9 [5.86]	174.9 [6.89]
BG	18.9 [0.74]	22.0 [0.87]	24.8 [0.98]	28.6 [1.13]
вн	126.6 [4.75]	116.4 [4.58]	125.8 [4.95]	149.6 [5.89]
BJ	32.3 [1.27]	34.7 [1.37]	37.5 [1.48]	42.0 [1.65]
ВК	69.5 [2.74]	75.2 [2.96]	85.0 [3.35]	96.0 [3.78]
BL	50.8 [2.00]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]
BM	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]
CA	159.9 [6.30]	156.3 [6.15]	168.1 [6.62]	192.6 [7.58]
СВ	43.3 [1.71]	46.2 [1.82]	49.6 [1.95]	54.4 [2.14]
сс	48.0 [1.89]	50.0 [1.97]	50.0 [1.97]	60.0 [2.36]
CD	50.8 [2.00]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]
CE	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]
CF	32.2 [1.27]	31.0 [1.22]	34.1 [1.34]	51.8 [2.04]
CG	44.0 [1.73]	56.8 [2.24]	55.0 [2.17]	50.0 [1.97]
сн	75.0 [2.95]	78.0 [3.07]	86.0 [3.39]	97.0 [3.82]
CI	44.2 [1.74]	36.0 [1.42]	38.1 [1.50]	52.8 [2.09]
СК	35.0 [1.38]	46.0 [1.81]	47.9 [1.89]	51.0 [2.01]
CL	26.1 [1.03]	21.5 [0.85]	22.9 [0.90]	25.1 [0.99]
СМ	74.8 [2.94]	74.4 [2.93]	79.0 [3.11]	87.7 [3.45]
CN	160.6 [6.32]	156.3 [6.15]	169.1 [6.66]	193.6 [7.62]
со	43.7 [1.72]	46.2 [1.82]	49.9 [1.96]	54.6 [2.15]
СР	48.0 [1.89]	50.0 [1.97]	50.0 [1.97]	60.0 [2.36]
CR	68.4 [2.69]	68.2 [2.69]	70.4 [2.77]	30.0 [1.18]
α			25°	

For further detailed information about Cartridge ports dimensions see the *Cartridge flange design ports per ISO 11 926-1* on page 117.

Legend: 1 Loop flushing relief valve 2 Loop flushing shuttle spool 3 Speed sensor

4 Minimum angle stop adjustment

- 5 Connector: DEUTSCH DT04-2P
- ${\bf 6}$ Alternate position of case drain port

e

Flange and housing dimensions

Cartridge flange design – options T* D* and P* D* (two-position control, PCOR, electric BPD)

Radial ports

Callout	Size 060	Size 080	Size 110	Size 160
AA	158.9 [6.26]	159.0 [6.26]	173.5 [6.83]	200.6 [7.90]
AB	114.7 [4.52]	119.4 [4.70]	130.8 [5.15]	138.2 [5.44]
AB (MB0)	100.6 [3.96]	100.1 [3.94]	104.6 [4.12]	113.4 [4.46]
AC	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]
AD	112.7 [4.44]	112.7 [4.44]	112.7 [4.44]	112.7 [4.44]
AE	67.3 [2.65] max	67.3 [2.65] max	67.3 [2.65] max	67.3 [2.65] max
AF	161.1 [6.34]	161.1 [6.34]	175.9 [6.93]	200.6 [7.90]
BA	120.9 [4.76]	116.7 [4.59]	125.8 [4.95]	149.6 [5.89]
BB	32.3 [1.27]	34.7 [1.38]	37.5 [1.48]	42.0 [1.65]
BC	74.4 [2.93]	78.4 [3.09]	88.9 [3.50]	99.9 [3.93]
BD	105.6 [4.16]	95.6 [3.76]	105.5 [4.15]	129.7 [5.11]
BE	83.8 [3.30]	90.6 [3.54]	100.9 [3.97]	111.7 [4.40]
BF	29.0 [1.14]	20.0 [0.79]	31.0 [1.22]	50.0 [1.97]
вн	120.9 [4.76]	116.4 [4.58]	125.8 [4.95]	149.6 [5.89]
BJ	32.3 [1.27]	34.7 [1.37]	37.5 [1.48]	42.0 [1.65]
ВК	69.5 [2.74]	75.2 [2.96]	85.0 [3.35]	96.0 [3.78]
BL	50.8 [2.0]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]
BM	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]
CA	149.6 [5.89]	147.8 [5.82]	162.3 [6.39]	184.6 [7.27]
СВ	40.6 [1.6]	43.7 [1.72]	48.0 [1.89]	52.1 [2.05]
сс	48.0 [1.89]	50.0 [1.97]	50.0 [1.97]	60.0 [2.36]
CD	50.8 [2.0]	57.2 [2.25]	57.2 [2.25]	66.6 [2.62]
CE	23.8 [0.94]	27.8 [1.09]	27.8 [1.09]	31.8 [1.25]
CF	32.2 [1.27]	31.0 [1.22]	34.1 [1.34]	51.8 [2.04]
CG	44.0 [1.73]	56.8 [2.24]	55.0 [2.17]	50.0 [1.97]
сн	75.0 [2.95]	78.0 [3.07]	86.0 [3.39]	97.0 [3.82]
ิ	44.2 [1.74]	36.0 [1.42]	38.1 [1.50]	52.8 [2.09]
СК	35.0 [1.38]	46.0 [1.81]	47.9 [1.89]	51.0 [2.01]
CL	26.1 [1.03]	21.5 [0.85]	22.9 [0.9]	25.1 [0.99]
СМ	74.8 [2.94]	74.4 [2.93]	79.0 [3.11]	87.7 [3.45]
CN	149.9 [5.9]	148.2 [5.83]	163.3 [6.43]	184.6 [7.27]
со	40.7 [1.60]	43.8 [1.72	48.2 [1.90]	52.3 [2.06]
СР	48.0 [1.89]	50.0 [1.97]	50.0 [1.97]	60.0 [2.36]
CR	68.4 [2.69]	68.2 [2.69]	70.4 [2.77]	30.0 [1.18]
α			25°	1

Axial and radial ports dimensions, mm [in]

Legend:

1 Loop flushing relief valve

2 Loop flushing shuttle spool

3 Speed sensor

4 Minimum angle stop adjustment

5 Connector: DEUTSCH DT04-2P

6 Alternate position of case drain port

Cartridge flange design ports per ISO 11 926-1

Ports dimensions per ISO 11 926-1; mm [in]

Ports	Size 060	Size 080	Size 110	Size 160	
L1, L2 Case drain	⁷ ⁄ ₈ -14; Ø42 [1.6	5] ¹⁾	1 ¹ / ₁₆ -12; Ø48.5 [1.91] ¹⁾		
A, B Split flange boss system	DN 19 (Ø19 mm) ²⁾ M10x1.5; 18 [0.71]	DN 25 (Ø25 mm) ²⁾ M12x1.75; 23 [0.91]		DN 32 (Ø32 mm) ²⁾ M12x1.75; 23 [0.91]	
MA, MB (axial HP ports) System pressure A, B gauge ³⁾	⁹ / ₁₆ -18; Ø25.0 [0.984] ¹⁾				
MA, MB (radial HP ports) System pressure A, B gauge ³⁾	⁷ / ₈ -14; Ø34.0 [1.34] ¹) ⁹ / ₁₆ -18; Ø25.0 [0.984] ¹)				
M4, M5 Servo pressure supply gauge	⁹ / ₁₆ –18; Ø25.0 [0.984] ¹⁾				

¹⁾ Max. clearance DIA for fitting.

²⁾ Typ 1, 40 MPa series per ISO 6162. Full thread depth.

³⁾ Countersink may be deeper that specified in the standard.

For further detailed information about Cartridge dimensions see:

- Cartridge flange design option L* (proportional control) on page 111
- Cartridge flange design option M* (proportional control) on page 113
- Cartridge flange design options T* D* and P* D* (two-position control, PCOR, electric BPD) on page 115

Cartridge mounting flange design

1. Coupling must not protrude beyong this surface

2. Maximum screw head space other side

Cartridge flange dimensions, mm [in]

Measure	Size 060	Size 080	Size 110	Size 160
ØB	160 [6.299]	190 [7.480]	200 [7.874]	200.0 [7.874]
øc	121.0 [4.764]	134.0 [5.276]	150.0 [5.905]	170.0 [6.693]
ØD	104.0 [4.094]	116.0 [4.567]	130.0 [5.118]	146.0 [5.748]
ØG	62.0 [2.441]	62.0 [2.441]	72.0 [2.835]	72.0 [2.835]
DE	53°	54°	40°	45°
DD	90.4 [3.559]	109.2 [4.299]	121.0 [4.764]	121.0 [4.772]
DF	71.1 [2.799]	80.9 [3.185]	101.8 [4.008]	98.0 [3.858]
DG	40.7 [1.602]	56.6 [2.228]	63.8 [2.512]	61.5 [2.423]
DH	12.6 [0.496]	11.2 [0.441]	11.2 [0.441]	11.2 [0.441]
LI	16.2 [0.638]	18.0 [0.709]	20.1 [0.791]	20.0 [0.787]
DK	235.0 [9.252]	260.0 [10.236]	286.0 [11.260]	286.0 [11.260]
DL	100.0 [3.937]	112.0 [4.409]	125.0 [4.921]	125.0 [4.921]
DM	30.0 [1.181]	30.0 [1.181]	30.0 [1.181]	30.0 [1.181]
DN	17.0 [0.669]	21.0 [0.827]	21.0 [0.827]	21.0 [0.827]
O-Ring [*]	3.0 x 150.0 [0.12 x 5.91]	3.0 x 179.0 [0.12 x 7.047]	3.0 x 192.0 [0.12 x 7.559]	3.0 x 192.0 [0.12 x 7.559]
Material Nr.	726927	502205	502206	502206

* O-Ring is not part of the shipment.

Motor installations will vary by application. It is the customer's responsibility to evaluate each application for proper mounting and sealing.

Frame size 060 and 080 shaft options

1. Coupling must not protrude beyong this surface

2. Maximum screw head space other side

Shaft dimensions for frame sizes 060 and 080, mm [in]

Option	AN/AS	BN/BS	CN/CS	GN/GS	HN/HS	JN/JS	
Teeth	14	21	23	14	16	18	
Pitch-Ø	29.633 [1.167]	33.337 [1.312]	36.513 [1.438]	28.0 [1.102]	32.0 [1.260]	36.0 [1.417]	
Spline [*]	ANSI B92.1-	1970 Class 5 flat	t root side fit	W30x2x30x14x9g	W35x2x30x16x9g	W40x2x30x18x9g	
Α	34.4 [1.315]	34.4 [1.315]	37.6 [1.48]	29.6 [1.165]	34.6 [1.362]	39.6 [1.559]	
ØН	44.5 [1.752]	44.5 [1.752]	44.5 [1.752]	44.5 [1.752]	44.5 [1.752]	44.5 [1.752]	
۵۱	25.8 [1.016]	30.0 [1.181]	32.0 [1.260]	25.0 [0.984]	30.0 [1.181]	35.0 [1.378]	
DA	37.5 [1.476]	37.5 [1.476]	37.5 [1.476]	27.0 [1.063]	32.0 [1.260]	37.0 [1.457]	
DB	47.5 [1.87]	47.5 [1.87]	47.5 [1.87]	35.0 [1.378]	40.0 [1.575]	45.0 [1.772]	
DC (060)	139.7 [5.500]	139.7 [5.500]	_	127.2 [5.008]	132.2 [5.205]	—	
DC (080)	157.9 [6.217]	157.9 [6.217]	157.9 [6.217]	—	150.4 [5.921]	155.4 [6.118]	
R	3.0 [0.118]	3.0 [0.118]	3.0 [0.118]	1.6 [0.063]	1.6 [0.063]	1.6 [0.063]	
v	M10	M10	M12	M10	M10	M12	
Angle	Pressure angle 30°						

* Spline per DIN 5480, side fit.

Shaft options overview for frame sizes 060 and 080

Size	Shaft option					
	AN/AS	BN/BS	CN/CS	GN/GS	HN/HS	JN/JS
060	•	•	_	•	•	_
080	•	•	•	_	•	•

 \bullet = available option; — = not available option

Frame size 110 and 160 shaft options

1. Coupling must not protrude beyong this surface

2. Maximum screw head space other side

Shaft dimensions	for frame sizes	110 and	160, mm [in]
------------------	-----------------	---------	--------------

Option	DN/DS	EN/ES	FN/FS	JN/JS	KN/KS	LN/LS	
Teeth	27	13	15	18	21	24	
Pitch-Ø	42.862 [1.687]	41.275 [1.625]	47.625 [1.875]	36.0 [1.417]	42.0 [1.654]	48.0 [1.890]	
Spline [*]	ANSI B92.1-	1970 Class 5 flat	root side fit	W40x2x30x18x9g	W45x2x30x21x9g	W50x2x30x24x9g	
ØA	44.0 [1.732]	43.6 [1.717]	50.0 [1.968]	39.6 [1.559]	44.6 [1.756]	49.6 [1.953]	
ØН	55.0 [2.165]	55.0 [2.165]	55.0 [2.165]	55.0 [2.165]	55.0 [2.165]	55.0 [2.165]	
۵ı	39.6 [1.559]	36.0 [1.417]	42.2 [1.661]	35.0 [1.378]	40.0 [1.575]	45.0 [1.772]	
DA	55.0 [2.165]	55.0 [2.165]	55.0 [2.165]	37.0 [1.457]	42.0 [1.654]	47.0 [1.850]	
DB	67.0 [2.638]	67.0 [2.638]	67.0 [2.638]	45.0 [1.772]	50.0 [1.968]	55.0 [2.165]	
DC	189.5 [7.461]	189.5 [7.461]	189.5 [7.461]	167.5 [6.594]	172.7 [6.799]	177.7 [6.996]	
R	3.0 [0.118]	3.0 [0.118]	3.0 [0.118]	2.5 [0.098]	2.5 [0.098]	2.5 [0.098]	
v	M16	M12	M16	M12	M16	M16	
Angle	Pressure angle 30°						

* Spline per DIN 5480, side fit.

Shaft options overview for frame sizes 110 and 160

Size	Shaft option					
	DN/DS	EN/ES	FN/FS	JN/JS	KN/KS	LN/LS
110	•	•	—	•	•	—
160	•	•	•	—	•	•

 \bullet = available option; — = not available option

H1B cartridge motors with speed sensor

To eliminate potential interference of the speed sensor and some gearbox parking brakeports, we have made/will make a slight modification to the speed sensor location. The speed sensor location is rotated by 25° to eliminate the potential interference.

Old speed sensor location: 0°

Introduction date of H1B cartridge motor with speed sensor rotated by 25°:

- Size 060 May 15, 2011
- Size 080 August 1, 2011
- Size 110 June 1, 2011
- Size 160 March 30, 2011

Options L1BA and L2BA (Electric proportional control)

1. Connector: DEUTSCH DT04-2P

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AA	272.3 [10.72]	289.9 [11.41]	316.4 [12.46]	343.8 [13.53]	368.4 [14.5]	387.0 [15.24]
AB	164.7 [6.48]	170.6 [6.72]	175.0 [6.89]	183.8 [7.24]	190.9 [7.52]	197.0 [7.76]
EA	212.2 [8.35]	229.8 [9.05]	256.3 [10.09]	283.5 [11.16]	309.2 [12.17]	327.0 [12.87]
EB	128.1 [5.04]	134.0 [5.28]	138.4 [5.45]	147.1 [5.79]	153.9 [6.06]	160.0 [6.30]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AA	247.8 [9.76]	265.9 [10.47]	283.9 [11.18]	311.7 [12.27]	336.6 [13.25]
AB	164.7 [6.48]	170.6 [6.72]	175.0 [6.89]	183.8 [7.24]	190.9 [7.52]
EA	187.7 [7.39]	205.8 [8.10]	223.8 [8.81]	251.6 [9.91]	277.2 [10.91]
EB	128.1 [5.04]	134.0 [5.28]	138.4 [5.45]	147.1 [5.79]	153.9 [6.06]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AA	188.1 [7.41]	187.5 [7.38]	201.9 [7.95]	229.3 [9.03]
AB	164.7 [6.48]	170.6 [6.72]	175.0 [6.89]	183.8 [7.24]
EA	128.0 [5.04]	127.4 [5.02]	141.8 [5.58]	169.2 [6.66]
EB	128.1 [5.04]	134.0 [5.28]	138.4 [5.45]	147.1 [5.79]

Option D*MA (Electric proportional control)

1. PCOR adjustment

2. Connector: DEUTSCH DT04-2P

SAE mounting flange per ISO 3019/1	1 dimensions (mm [in])
------------------------------------	------------------------

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AA	275.6 [10.85]	293.2 [11.54]	319.7 [12.59]	346.7 [13.65]	371.6 [14.63]	390.0 [15.35]
AB	164.7 [6.48]	170.6 [6.72]	175.0 [6.89]	183.8 [7.24]	190.9 [7.52]	197.0 [7.76]
EA	212.2 [8.35]	230.0 [9.05]	256.3 [10.09]	283.5 [11.16]	309.2 [12.17]	327.0 [12.87]
EB	128.1 [5.04]	134.0 [5.28]	138.4 [5.45]	147.1 [5.79]	153.9 [6.06]	160.0 [6.30]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AA	251.1 [9.89]	269.2 [10.60]	287.2 [11.31]	314.8 [12.39]	339.6 [13.37]
AB	164.7 [6.48]	170.6 [6.72]	175.0 [6.89]	183.8 [7.24]	190.9 [7.52]
EA	187.7 [7.39]	205.8 [8.10]	223.8 [8.81]	251.6 [9.91]	277.2 [10.91]
EB	128.1 [5.04]	134.0 [5.28]	138.4 [5.45]	147.1 [5.79]	153.9 [6.06]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AA	191.4 [7.54]	190.8 [7.51]	205.2 [8.08]	232.4 [9.15]
AB	164.7 [6.48]	170.6 [6.72]	175.0 [6.89]	183.8 [7.24]
EA	128.0 [5.03]	127.4 [5.02]	141.8 [5.58]	169.2 [6.66]
EB	128.1 [5.04]	134.0 [5.28]	138.4 [5.45]	147.1 [5.79]

Option D*M* (Electric proportional control)

1. PCOR adjustment

2. Connector: DEUTSCH DT04-2P

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AA	275.6 [10.85]	293.2 [11.54]	319.7 [12.59]	346.7 [13.65]	371.6 [14.63]	390.0 [15.35]
AB	164.7 [6.48]	170.6 [6.72]	175.0 [6.89]	183.8 [7.24]	190.9 [7.52]	197.0 [7.76]
EA	212.2 [8.35]	230.0 [9.05]	256.3 [10.09]	283.5 [11.16]	309.2 [12.17]	327.0 [12.87]
EB	128.1 [5.04]	134.0 [5.28]	138.4 [5.45]	147.1 [5.79]	153.9 [6.06]	160.0 [6.30]
EC	218.6 [8.61]	236.3 [9.30]	262.8 [10.35]	290.0 [11.42]	314.7 [12.39]	333.0 [13.11]
ED	59.8 [2.35]	65.7 [2.59]	70.1 [2.76]	78.8 [3.10]	86.9 [3.42]	92.0 [3.62]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AA	251.1 [9.89]	269.2 [10.60]	287.2 [11.31]	314.8 [12.39]	339.6 [13.37]
AB	164.7 [6.48]	170.6 [6.72]	175.0 [6.89]	183.8 [7.24]	190.9 [7.52]
EA	187.7 [7.39]	205.8 [8.10]	223.8 [8.81]	251.6 [9.91]	277.2 [10.91]
EB	128.1 [5.04]	134.0 [5.28]	138.4 [5.45]	147.1 [5.79]	153.9 [6.06]
EC	194.1 [7.64]	212.3 [8.36]	230.3 [9.07]	258.1 [10.16]	282.7 [11.13]
ED	59.8 [2.35]	65.7 [2.59]	70.1 [2.76]	78.8 [3.10]	86.9 [3.42]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AA	191.4 [7.54]	190.8 [7.51]	205.2 [8.08]	232.4 [9.15]
AB	164.7 [6.48]	170.6 [6.72]	175.0 [6.89]	183.8 [7.24]
EA	128.0 [5.03]	127.4 [5.02]	141.8 [5.58]	169.2 [6.66]
EB	128.1 [5.04]	134.0 [5.28]	138.4 [5.45]	147.1 [5.79]
EC	134.4 [5.29]	133.9 [5.27]	148.3 [5.84]	175.7 [6.92]
ED	59.8 [2.35]	65.7 [2.59]	70.1 [2.76]	78.8 [3.10]

Options M1CA and M2CA (Electric proportional control)

1. Connector: DEUTSCH DT04-2P

H1 B Dimensions reused tables

SAE mounting flange per ISO 3019/1 dimensions (mr	n [in])
---	---------

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AB	224.2 [8.83]	235.7 [9.28]	247.2 [9.73]	265.0 [10.43]	279.4 [11]	290.0 [11.42]
EA	126.1 [4.96]	138.8 [5.46]	160.7 [6.33]	180.4 [7.10]	199.9 [7.87]	213.0 [8.39]
EB	172.2 [6.78]	183.6 [7.23]	195.1 [7.68]	212.8 [8.38]	227.5 [8.96]	238.0 [9.37]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AB	224.2 [8.83]	235.7 [9.28]	247.2 [9.73]	265.0 [10.43]	279.4 [11]
EA	101.6 [4.0]	114.8 [4.52]	128.2 [5.05]	148.5 [5.85]	167.9 [6.61]
EB	172.2 [6.78]	183.6 [7.23]	195.1 [7.68]	212.8 [8.38]	227.5 [8.96]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AB	224.2 [8.83]	235.7 [9.28]	247.2 [9.73]	265.0 [10.43]
EA	41.9 [1.65]	36.4 [1.43]	46.2 [1.82]	66.1 [2.60]
EB	172.2 [6.78]	183.6 [7.23]	195.1 [7.68]	212.8 [8.38]

Option K*KA (Electric proportional control)

- 1. Connector: DEUTSCH DT04-2P
- 2. PCOR adjustment
- 3. Electric proportional solenoid

H1 B Dimensions reused tables

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AB	224.2 [8.83]	235.7 [9.28]	247.2 [9.73]	265.0 [10.43]	279.4 [11]	290.0 [11.42]
EA	126.1 [4.96]	138.8 [5.46]	160.7 [6.33]	180.4 [7.10]	199.9 [7.87]	213.0 [8.39]
EB	172.2 [6.78]	183.6 [7.23]	195.1 [7.68]	212.8 [8.38]	227.5 [8.96]	238.0 [9.37]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AB	224.2 [8.83]	235.7 [9.28]	247.2 [9.73]	265.0 [10.43]	279.4 [11]
EA	101.6 [4.0]	114.8 [4.52]	128.2 [5.05]	148.5 [5.85]	167.9 [6.61]
EB	172.2 [6.78]	183.6 [7.23]	195.1 [7.68]	212.8 [8.38]	227.5 [8.96]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AB	224.2 [8.83]	235.7 [9.28]	247.2 [9.73]	265.0 [10.43]
EA	41.9 [1.65]	36.4 [1.43]	46.2 [1.82]	66.1 [2.60]
EB	172.2 [6.78]	183.6 [7.23]	195.1 [7.68]	212.8 [8.38]

Options K1K1 and K2K2 (Electric proportional control with PCOR and BPD)

- 1. Connector: DEUTSCH DT04-2P
- 2. BPD solenoid
- 3. PCOR adjustment
- 4. Proportional solenoid

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AB	224.2 [8.83]	235.7 [9.28]	247.2 [9.73]	265.0 [10.43]	279.4 [11]	290.0 [11.42]
EA	126.1 [4.96]	138.8 [5.46]	160.7 [6.33]	180.4 [7.10]	199.9 [7.87]	213.0 [8.39]
EB	172.2 [6.78]	183.6 [7.23]	195.1 [7.68]	212.8 [8.38]	227.5 [8.96]	238.0 [9.37]
EC	164.8 [6.49]	177.4 [6.98]	199.4 [7.85]	219.0 [8.62]	238 [9.37]	251.0 [9.88]
ED	144.5 [5.69]	156.0 [6.14]	167.5 [6.59]	185.1 [7.29]	200.6 [7.9]	210.0 [8.27]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AB	224.2 [8.83]	235.7 [9.28]	247.2 [9.73]	265.0 [10.43]	279.4 [11]
EA	101.6 [4.0]	114.8 [4.52]	128.2 [5.05]	148.5 [5.85]	167.9 [6.61]
EB	172.2 [6.78]	183.6 [7.23]	195.1 [7.68]	212.8 [8.38]	227.5 [8.96]
EC	140.3 [5.52]	153.4 [6.04]	166.9 [6.57]	187.1 [7.37]	206.0 [8.11]
ED	144.5 [5.69]	156.0 [6.14]	167.5 [6.59]	185.1 [7.29]	200.6 [7.9]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AB	224.2 [8.83]	235.7 [9.28]	247.2 [9.73]	265.0 [10.43]
EA	41.9 [1.65]	36.4 [1.43]	46.2 [1.82]	66.1 [2.60]
EB	172.2 [6.78]	183.6 [7.23]	195.1 [7.68]	212.8 [8.38]
EC	80.6 [3.17]	75.0 [2.95]	84.9 [3.34]	104.7 [4.12]
ED	144.5 [5.69]	156.0 [6.14]	167.5 [6.59]	185.1 [7.29]

Options E1AA and E2AA (Electric two-position control)

M4 Servo gauge port ISO 11926-1; 9/16 -18UNF-2B; Ø25.0 [0.98] max. clearance DIA for fitting

1 Electric two-position control

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
АМ	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	224.1 [8.82]	257.7 [10.15]	267.0 [10.51]
EE	139.8 [5.50]	149.7 [5.89]	172.1 [6.78]	191.3 [7.53]	210.1 [8.27]	225.0 [8.86]
EF	133.9 [5.27]	146.9 [5.78]	164.4 [6.47]	182.9 [7.20]	198.3 [7.81]	208.0 [8.19]
EG	158.8 [6.25]	168.8 [6.65]	191.1 [7.52]	210.4 [8.28]	230.2 [9.06]	244.0 [9.61]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	214.4 [8.44]	210.1 [8.27]	258.0 [10.16]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	224.1 [8.82]	257.7 [10.15]
EE	115.3 [4.54]	125.7 [4.95]	139.6 [5.50]	159.4 [6.28]	178.1 [7.01]
EF	133.9 [5.27]	146.9 [5.78]	164.4 [6.47]	182.9 [7.20]	198.3 [7.81]
EG	134.3 [5.29]	144.8 [5.70]	158.6 [6.24]	178.5 [7.03]	198.2 [7.8]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	214.4 [8.44]	178.1 [7.01]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	224.1 [8.82]
EE	55.6 [2.19]	47.3 [1.86]	57.6 [2.27]	77.0 [3.03]
EF	133.9 [5.27]	146.9 [5.78]	164.4 [6.47]	182.9 [7.20]
EG	74.6 [2.94]	66.4 [2.61]	76.6 [3.02]	96.1 [3.78]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	214.4 [8.44]

Options F1EA and F2EA (Electric two-position control)

M4 Servo gauge port ISO 11926-1; 9/16 -18UNF-2B; Ø25.0 [0.98] max. clearance DIA for fitting

1 Connector: DEUTSCH DT04-2P

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]	267.3 [10.53]
EE	165.7 [6.55]	175.8 [6.92]	198.0 [7.80]	217.3 [8.56]	237.1 [9.33]	250.8 [9.87]
EF	141.9 [5.59]	154.9 [6.10]	172.4 [6.79]	190.9 [7.52]	206.1 [8.11]	215.7 [8.49]
EG	158.8 [6.25]	168.8 [6.65]	191.1 [7.52]	210.4 [8.28]	230.2 [9.06]	243.9 [9.60]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]	248.1 [9.77]	257.7 [10.15]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]
EE	141.2 [5.56]	151.7 [5.97]	165.5 [6.52]	185.4 [7.30]	205.1 [8.07]
EF	141.9 [5.59]	154.9 [6.10]	172.4 [6.79]	190.9 [7.52]	206.1 [8.11]
EG	134.3 [5.29]	144.8 [5.70]	158.6 [6.24]	178.5 [7.03]	198.2 [7.8]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]	248.1 [9.77]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]
EE	81.5 [2.19]	73.3 [2.89]	83.5 [3.29]	103.0 [4.06]
EF	141.9 [5.59]	154.9 [6.10]	172.4 [6.79]	190.9 [7.52]
EG	74.6 [2.94]	66.4 [2.61]	76.6 [3.02]	96.1 [3.78]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]

Options T1DA, T2DA and P1DA, P2DA (Electric two-position controls with PCOR and electric proportional PPCOR)

1. Connector: DEUTSCH DT04-2P

- 2. Two-position solenoid "T" or Proportional PCOR "P"
- 3. PCOR adjustment

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]	267.3 [10.53]
EE	139.8 [5.50]	149.7 [5.89]	172.1 [6.78]	191.3 [7.53]	210.1 [8.27]	225.0 [8.86]
EF	133.9 [5.27]	146.9 [5.78]	164.4 [6.47]	182.9 [7.20]	198.3 [7.81]	208.0 [8.19]
EG	158.8 [6.25]	168.8 [6.65]	191.1 [7.52]	210.4 [8.28]	230.2 [9.06]	244.0 [9.61]
EH	183.9 [6.71]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]	248.1 [9.77]	258.0 [10.16]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]
EE	115.3 [4.54]	125.7 [4.95]	139.6 [5.50]	159.4 [6.28]	178.1 [7.01]
EF	133.9 [5.27]	146.9 [5.78]	164.4 [6.47]	182.9 [7.20]	198.3 [7.81]
EG	134.3 [5.29]	144.8 [5.70]	158.6 [6.24]	178.5 [7.03]	198.2 [7.8]
EH	183.9 [6.71]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]	248.1 [9.77]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]
EE	55.6 [2.19]	47.3 [1.86]	57.6 [2.27]	77.0 [3.03]
EF	133.9 [5.27]	146.9 [5.78]	164.4 [6.47]	182.9 [7.20]
EG	74.6 [2.94]	66.4 [2.61]	76.6 [3.02]	96.1 [3.78]
EH	183.9 [6.71]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]

Options T1D1, T2D2 and P1D1, P2D2 (Electric two-position controls with PCOR, BPD and electric proportional PPCOR, BPD)

- 1. Connector: DEUTSCH DT04-2P
- 2. Two-position solenoid "T" or Proportional PCOR "P"
- 3. BPD solenoid
- 4. PCOR adjustment

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]	267.3 [10.53]
EC	176.3 [6.94]	186.3 [7.33]	208.6 [8.21]	227.9 [8.97]	246.6 [9.71]	261.0 [10.0]
ED	144.4 [5.69]	157.3 [6.19]	174.9 [6.89]	193.3 [7.61]	208.8 [8.22]	218.0 [8.58]
EE	139.8 [5.50]	149.7 [5.89]	172.1 [6.78]	191.3 [7.53]	210.1 [8.27]	225.0 [8.86]
EF	133.9 [5.27]	146.9 [5.78]	164.4 [6.47]	182.9 [7.20]	198.3 [7.81]	208.0 [8.19]
EG	158.8 [6.25]	168.8 [6.65]	191.1 [7.52]	210.4 [8.28]	230.2 [9.06]	244.0 [9.61]
EH	183.9 [6.71]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]	248.1 [9.77]	258.0 [10.16]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 DIN 125	Size 080 DIN 140	Size 110 DIN 160	Size 160 DIN 180	Size 210 DIN 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]
EC	151.8 [5.98]	162.3 [6.39]	176.1 [6.93]	196.0 [7.72]	214.6 [8.45]
ED	144.4 [5.69]	157.3 [6.19]	174.9 [6.89]	193.3 [7.61]	208.8 [8.22]
EE	115.3 [4.54]	125.7 [4.95]	139.6 [5.50]	159.4 [6.28]	178.1 [7.01]
EF	133.9 [5.27]	146.9 [5.78]	164.4 [6.47]	182.9 [7.20]	198.3 [7.81]
EG	134.3 [5.29]	144.8 [5.70]	158.6 [6.24]	178.5 [7.03]	198.2 [7.8]
EH	183.9 [6.71]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]	248.1 [9.77]

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]
EC	92.1 [3.63]	83.9 [3.30]	94.1 [3.70]	113.6 [4.47]
ED	144.4 [5.69]	157.3 [6.19]	174.9 [6.89]	193.3 [7.61]
EE	55.6 [2.19]	47.3 [1.86]	57.6 [2.27]	77.0 [3.03]
EF	133.9 [5.27]	146.9 [5.78]	164.4 [6.47]	182.9 [7.20]

Cartridge mounting flange dimensions (mm [in]) (continued)

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
EG	74.6 [2.94]	66.4 [2.61]	76.6 [3.02]	96.1 [3.78]
EH	183.9 [6.71]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]

Option LHBA (Hydraulic proportional control)

1. Pilot Pressure Gauge Port "X1" ISO 11926-1 9/16-8

2. Start pressure adjustment screw

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AA	272.3 [10.72]	289.9 [11.41]	316.4 [12.46]	343.8 [13.53]	371.6 [14.63]	390.3 [15.37]
AB	157.4 [6.20]	163.3 [6.43]	167.7 [6.60]	176.4 [6.94]	183.5 [7.22]	189.6 [7.46]
EA	242.6 [9.55]	260.3 [10.25]	286.8 [11.29]	314.00 [12.36]	337.8 [13.3]	357.4 [14.07]
EB	115.0 [4.53]	120.9 [4.76]	138.4 [4.93]	134.0 [5.28]	141.1 [5.56]	147.3 [5.80]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AA	247.8 [9.76]	265.9 [10.47]	283.9 [11.18]	311.7 [12.27]	339.6 [13.37]
AB	157.4 [6.20]	163.3 [6.43]	167.7 [6.60]	176.4 [6.94]	183.5 [7.22]
EA	218.1 [8.59]	236.3 [9.30]	254.3 [10.01]	282.1 [11.11]	306.7 [12.07]
EB	115.0 [4.53]	120.9 [4.76]	125.3 [4.93]	134.0 [5.28]	141.1 [5.56]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AA	188.1 [7.41]	187.5 [7.38]	201.9 [7.95]	229.3 [9.03]
AB	157.4 [6.20]	163.3 [6.43]	167.7 [6.60]	176.4 [6.94]
EA	158.4 [6.24]	169.1 [6.66]	172.3 [6.78]	199.7 [7.86]
EB	115.0 [4.53]	120.9 [4.76]	138.4 [4.93]	134.0 [5.28]

Option MHCA (Hydraulic proportional control)

- 1. Pilot Pressure Gauge Port "X1" ISO 11926-1 9/16-8
- 2. Start pressure adjustment screw

SAE mounting flange per ISO 3019/1	dimensions (mm [in])
she mounting hange per 150 5012, 1	

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AB	224.2 [8.83]	228.4 [8.99]	239.9 [9.44]	257.6 [10.14]	272 [10.71]	282.8 [11.13]
EA	158.8 [6.25]	171.5 [6.75]	193.4 [7.61]	213.1 [8.39]	231.7 [9.12]	245.5 [9.67]
EB	172.2 [6.78]	188.7 [7.43]	200.2 [7.88]	217.8 [8.57]	232.2 [9.14]	243.0 [9.57]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AB	224.2 [8.83]	228.4 [8.99]	239.9 [9.44]	257.6 [10.14]	272 [10.71]
EA	134.4 [5.28]	147.5 [5.81]	160.9 [6.33]	181.2 [7.13]	199.7 [7.86]
EB	172.2 [6.78]	188.7 [7.43]	200.2 [7.88]	217.8 [8.57]	232.2 [9.14]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AB	224.2 [8.83]	228.4 [8.99]	239.9 [9.44]	257.6 [10.14]
EA	74.6 [2.94]	69.1 [2.72]	78.9 [3.11]	98.8 [3.89]
EB	172.2 [6.78]	188.7 [7.43]	200.2 [7.88]	217.8 [8.57]

Option DHMA (Hydraulic proportional control)

- 1. Pilot Pressure Gauge Port "X1" ISO 11926-1 9/16-8
- 2. Start pressure adjustment screw
- 3. PCOR adjustment screw

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AA	275.6 [10.85]	293.2 [11.54]	224.1 [8.82]	346.9 [13.78]	371.6 [14.63]	390.3 [15.37]
AB	157.4 [6.20]	163.3 [6.43]	167.7 [6.60]	176.4 [6.94]	183.5 [7.22]	189.6 [7.46]
EA	242.6 [9.55]	260.3 [10.25]	216.0 [8.50]	314.00 [12.36]	337.8 [13.3]	357.4 [14.07]
EB	115.0 [4.53]	120.9 [4.76]	125.3 [4.93]	133.99 [5.28]	141.1 [5.56]	147.3 [5.80]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AA	251.1 [9.89]	269.2 [10.60]	287.2 [11.31]	315.0 [12.40]	339.6 [13.37]
AB	157.4 [6.20]	163.3 [6.43]	167.7 [6.60]	176.4 [6.94]	183.5 [7.22]
EA	218.1 [8.59]	236.3 [9.30]	254.3 [10.01]	282.1 [11.11]	306.7 [12.07]
EB	115.0 [4.53]	120.9 [4.76]	125.3 [4.93]	133.99 [5.28]	141.1 [5.56]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AA	191.3 [7.54]	190.8 [7.51]	224.1 [8.82]	232.6 [9.16]
AB	157.4 [6.20]	163.3 [6.23]	167.7 [6.60]	176.4 [6.94]
EA	158.4 [6.24]	169.1 [6.66]	216.0 [8.50]	199.7 [7.86]
EB	115.0 [4.53]	120.9 [4.76]	125.3 [4.93]	133.99 [5.28]

Option DHMH (Hydraulic proportional control)

- 1. Pilot pressure gauge port "X1" ISO 11926-1 9/16-8
- 2. Pilot pressure BPD port "XA" ISO 11926-1 9/16-8
- 3. Pilot pressure BPD port "XB" ISO 11926-1 9/16-8
- 4. PCOR adjustment
- 5. Start pressure adjustment screw

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AA	275.6 [10.85]	293.2 [11.54]	224.1 [8.82]	346.9 [13.78]	371.6 [14.63]	390.3 [15.37]
AB	157.4 [6.20]	163.3 [6.43]	167.7 [6.60]	176.4 [6.94]	183.5 [7.22]	189.6 [7.46]
EA	242.6 [9.55]	260.3 [10.25]	216.0 [8.50]	314.00 [12.36]	337.8 [13.3]	357.4 [14.07]
EB	115.0 [4.53]	120.9 [4.76]	125.3 [4.93]	133.99 [5.28]	141.1 [5.56]	147.3 [5.80]
EC	246.7 [9.71]	264.3 [10.41]	290.8 [11.45]	318.1 [12.52]	342.8 [13.5]	361.5 [14.23]
ED	61.3 [2.41]	67.2 [2.65]	74.6 [2.94]	80.3 [3.16]	87.4 [3.44]	93.6 [3.69]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AA	251.1 [9.89]	269.2 [10.60]	287.2 [11.31]	315.0 [12.40]	339.6 [13.37]
AB	157.4 [6.20]	163.3 [6.43]	167.7 [6.60]	176.4 [6.94]	183.5 [7.22]
EA	218.1 [8.59]	236.3 [9.30]	254.3 [10.01]	282.1 [11.11]	306.7 [12.07]
EB	115.0 [4.53]	120.9 [4.76]	125.3 [4.93]	133.99 [5.28]	141.1 [5.56]
EC	222.2 [8.75]	240.3 [9.46]	258.3 [10.17]	286.2 [11.27]	310.8 [12.24]
ED	61.3 [2.41]	67.2 [2.65]	74.6 [2.94]	80.3 [3.16]	87.4 [3.44]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AA	191.3 [7.54]	190.8 [7.51]	224.1 [8.82]	232.6 [9.16]
AB	157.4 [6.20]	163.3 [6.23]	167.7 [6.60]	176.4 [6.94]
EA	158.4 [6.24]	169.1 [6.66]	216.0 [8.50]	199.7 [7.86]
EB	115.0 [4.53]	120.9 [4.76]	125.3 [4.93]	133.99 [5.28]

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200	
EC	162.5 [6.40]	173.1 [6.81]	176.3 [6.94]	203.8 [8.02]	
ED	61.3 [2.41]	67.2 [2.65]	74.6 [2.94]	80.3 [3.16]	

Cartridge mounting flange dimensions (mm [in]) (continued)

Option HEHE (Hydraulic two-position control)

X1 Control pressure port ISO 11926-1; 9/16 -18

M4 Servo pressure supply gauge port ISO 11926-1; 9/16 -18

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]	267.0 [10.51]
EG	161.9 [6.37]	171.8 [6.76]	194.2 [7.65]	213.5 [8.41]	203.5 [8.01]	247.0 [9.72]
EH	184.8 [7.28]	197.8 [7.79]	215.3 [8.48]	233.8 [9.20]	249.6 [9.83]	259.0 [10.2]
EJ	152.2 [5.99]	162.2 [6.39]	185.5 [7.30]	203.8 [8.02]	223.7 [8.81]	237.0 [9.33]
EK	163.3 [6.43]	176.3 [6.94]	193.8 [7.63]	212.3 [8.36]	227.5 [8.96]	237.0 [9.33]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]
EG	137.4 [5.41]	147.8 [5.82]	161.7 [6.37]	181.6 [7.15]	203.5 [8.01]
EH	184.8 [7.28]	197.8 [7.79]	215.3 [8.48]	233.8 [9.20]	249.6 [9.83]
EJ	127.7 [5.03]	138.2 [5.44]	152.0 [5.98]	171.9 [6.77]	191.7 [7.55]
EK	163.3 [6.43]	176.3 [6.94]	193.8 [7.63]	212.3 [8.36]	227.5 [8.96]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]
EG	77.7 [3.06]	69.4 [2.73]	79.7 [3.14]	99.2 [3.91]
EH	184.8 [7.28]	197.8 [7.79]	215.3 [8.48]	233.8 [9.20]
EJ	68.0 [2.68]	59.8 [2.35]	70.0 [2.76]	89.5 [3.52]
EK	163.3 [6.43]	176.3 [6.94]	193.8 [7.63]	212.3 [8.36]

Option HFHF (Hydraulic two-position control)

- X1 Control pressure port ISO 11926-1; 9/16 -18
- M4 Servo pressure supply Gauge port ISO 11926-1; 9/16 -18

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
АМ	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]	267.0 [10.51]
EG	164.1 [6.46]	174.0 [6.85]	194.4 [7.73]	215.7 [8.49]	216.9 [8.54]	249.0 [9.80]
EH	185.5 [7.30]	198.4 [7.81]	216.0 [8.50]	234.4 [9.23]	225.6 [8.88]	259.0 [10.2]
EJ	152.2 [5.99]	162.2 [6.39]	184.5 [7.26]	203.8 [8.02]	230.2 [9.06]	237.0 [9.33]
EK	163.3 [6.43]	176.3 [6.94]	193.8 [7.63]	212.3 [8.36]	248.1 [9.77]	237.0 [9.33]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
АМ	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]
EG	139.6 [5.50]	150.0 [5.91]	163.9 [6.45]	183.8 [7.24]	184.9 [7.28]
EH	185.5 [7.30]	198.4 [7.81]	216.0 [8.50]	234.4 [9.23]	225.6 [8.88]
EJ	127.7 [5.03]	138.2 [5.44]	152.0 [5.98]	171.9 [6.77]	198.2 [7.8]
EK	163.3 [6.43]	176.3 [6.94]	193.8 [7.63]	212.3 [8.36]	248.1 [9.77]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]
EG	79.9 [3.15]	71.6 [2.82]	81.9 [3.22]	101.4 [3.99]
EH	185.5 [7.30]	198.4 [7.81]	216.0 [8.50]	234.4 [9.23]
EJ	68.0 [2.68]	59.8 [2.35]	70.0 [2.76]	89.5 [3.52]
EK	163.3 [6.43]	176.3 [6.94]	193.8 [7.63]	212.3 [8.36]

Option THHA (Hydraulic two-position control)

M4 Servo gauge port ISO 11926-1; 9/16 -18UNF-2B

X1 Pilot pressure gauge port ISO 11926-1 9/16-8

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]	267.3 [10.52]
EE	145.5 [5.73]	155.5 [6.12]	177.8 [7.0]	197.1 [7.76]	216.9 [8.54]	230.6 [9.08]
EF	161.4 [6.35]	174.4 [6.87]	191.9 [7.56]	210.4 [8.28]	225.6 [8.88]	235.2 [9.26]
EG	158.8 [6.25]	168.8 [6.65]	191.1 [7.52]	210.4 [8.28]	230.2 [9.06]	243.9 [9.60]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]	248.1 [9.77]	257.8 [10.15]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]
EE	121.0 [4.76]	131.5 [5.18]	145.3 [5.72]	165.2 [6.50]	184.9 [7.28]
EF	161.4 [6.35]	174.4 [6.87]	191.9 [7.56]	210.4 [8.28]	225.6 [8.88]
EG	134.3 [5.29]	144.8 [5.70]	158.6 [6.24]	178.5 [7.03]	198.2 [7.8]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]	248.1 [9.77]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]
EE	61.3 [2.41]	53.1 [2.09]	63.3 [2.49]	82.8 [3.26]
EF	161.4 [6.35]	174.4 [6.87]	191.9 [7.56]	210.4 [8.28]
EG	74.6 [2.94]	66.4 [2.61]	76.6 [3.02]	96.1 [3.78]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]

Option THHB (Hydraulic two-position control)

- X1 Pilot pressure gauge port ISO 11926-1; 9/16 -18
- XA, XB Pilot pressure BPD port ISO 11926-1 9/16-8
- M4 Servo pressure supply gauge port ISO 11926-1; 9/16 -18

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82	242.5 [9.55]	257.7 [10.15]	267.3 [10.52]
EA, EC	182 [7.17]	192 [7.56]	214.3 [8.44]	233.6 [9.20]	253.6 [9.98]	267.1 [10.52]
EB, ED	171.9 [6.77]	184.9 [7.28]	202.4 [7.97]	210.4 [8.28]	236 [9.29]	245.7 [9.67]
EE	145.5 [5.73]	155.5 [6.12]	177.8 [7.00]	197.1 [7.76]	216.9 [8.54]	230.6 [9.08]
EF	161.4 [6.35	174.4 [6.87]	191.9 [7.56]	210.4 [8.28]	225.6 [8.88]	235.2 [9.26]
EG	158.8 [6.25]	168.8 [6.65]	191.1 [7.52]	210.4 [8.28]	230.2 [9.06]	243.9 [9.60]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]	248.1 [9.77]	257.8 [10.15]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]
EA, EC	157.5 [6.20]	168 [6.61]	181.8 [7.16]	201.7 [7.94]	221.5 [8.72]
EB, ED	171.9 [6.77]	184.9 [7.28]	202.4 [7.97]	210.4 [8.28]	236 [9.29]
EE	121.0 [4.76]	131.5 [5.18]	145.3 [5.72]	165.2 [6.50]	184.9 [7.28]
EF	161.4 [6.35	174.4 [6.87]	191.9 [7.56]	210.4 [8.28]	225.6 [8.88]
EG	134.3 [5.29]	144.8 [5.70]	158.6 [6.24]	178.5 [7.03]	198.2 [7.8]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]	248.1 [9.77]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]
EA, EC	97.8 [3.85]	89.6 [3.53]	99.8 [3.93]	119.3 [4.70]

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
EB, ED	171.9 [6.77]	184.9 [7.28]	202.4 [7.97]	210.4 [8.28]
EE	61.3 [2.41]	53.1 [2.09]	63.3 [2.49]	82.8 [3.26]
EF	161.4 [6.35]	174.4 [6.87]	191.9 [7.56]	210.4 [8.28]
EG	74.6 [2.94]	66.4 [2.61]	76.6 [3.02]	96.1 [3.78]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]

Cartridge mounting flange dimensions (mm [in]) (continued)

Option TADA (Hydraulic two-position control)

M4 Servo gauge port ISO 11926-1; 9/16 -18UNF-2B

1 PCOR adjustment

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82	242.5 [9.55]	257.7 [10.15]	267.3 [10.52]
EG	158.8 [6.25]	168.8 [6.65]	191.1 [7.52]	210.4 [8.28]	230.2 [9.06]	243.9 [9.60]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]	248.1 [9.77]	257.8 [10.15]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]
EG	134.3 [5.29]	144.8 [5.70]	158.6 [6.24]	178.5 [7.03]	198.2 [7.8]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]	248.1 [9.77]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
АМ	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]
EG	74.6 [2.94]	66.4 [2.61]	76.6 [3.02]	96.1 [3.78]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]

Option TAD1 and TAD2 (Hydraulic two-position control)

- 1. PCOR adjustment
- 2. Electric BPD

SAE mounting flange per ISO 3019/1 dimensions (mm [in])

	Size 060 SAE 127-4	Size 080 SAE 127-4	Size 110 SAE 152-4	Size 160 SAE 152-4	Size 210 SAE 165-4	Size 250 SAE 165-4
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82	242.5 [9.55]	257.7 [10.15]	267.3 [10.52]
EC	176.3 [6.94]	186.3 [7.33]	208.6 [8.21]	227.9 [8.97]	246.6 [9.71]	261.0 [10.0]
ED	144.4 [5.69]	157.3 [6.19]	174.9 [6.89]	193.3 [7.61]	208.8 [8.22]	218.0 [8.58]
EG	158.8 [6.25]	168.8 [6.65]	191.1 [7.52]	210.4 [8.28]	230.2 [9.06]	243.9 [9.60]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]	248.1 [9.77]	257.8 [10.15]

DIN B4 HL mounting flange per ISO 3019/2 dimensions, (mm [in])

	Size 060 – DIN 125	Size 080 – DIN 140	Size 110 – DIN 160	Size 160 – DIN 180	Size 210 – DIN 200
AM	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]	257.7 [10.15]
EC	151.8 [5.98]	162.3 [6.39]	176.1 [6.93]	196.0 [7.72]	214.6 [8.45]
ED	144.4 [5.69]	157.3 [6.19]	174.9 [6.89]	193.3 [7.61]	208.8 [8.22]
EG	134.3 [5.29]	144.8 [5.70]	158.6 [6.24]	178.5 [7.03]	198.2 [7.8]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]	248.1 [9.77]

Size 250 is not available.

Cartridge mounting flange dimensions (mm [in])

	Size 060 Cartridge 160	Size 080 Cartridge 190	Size 110 Cartridge 200	Size 160 Cartridge 200
АМ	193.6 [7.62]	206.6 [8.13]	224.1 [8.82]	242.5 [9.55]
EC	92.1 [3.63]	83.9 [3.30]	94.1 [3.70]	113.6 [4.47]
ED	144.4 [5.69]	157.3 [6.19]	174.9 [6.89]	193.3 [7.61]
EG	74.6 [2.94]	66.4 [2.61]	76.6 [3.02]	96.1 [3.78]
EH	184.0 [7.24]	196.9 [7.75]	214.4 [8.44]	232.9 [9.17]

Products we offer:

- DCV directional control valves
- Electric converters
- Electric machines
- Electric motors
- Gear motors
- Gear pumps
- Hydrostatic motors
- Hydrostatic pumps
- Orbital motors
- PLUS+1[®] controllers
- PLUS+1[®] displays
- PLUS+1[®] joysticks and pedals
- PLUS+1[®] operator interfaces
- PLUS+1[®] sensors
- PLUS+1[®] software
- PLUS+1[®] software services, support and training
- Position controls and sensors
- PVG proportional valves
- Steering components and systems
- Telematics

Hydro-Gear

www.hydro-gear.com

Daikin-Sauer-Danfoss

www.daikin-sauer-danfoss.com

Danfoss Power Solutions is a global manufacturer and supplier of high-quality hydraulic and electric components. We specialize in providing state-of-the-art technology and solutions that excel in the harsh operating conditions of the mobile off-highway market as well as the marine sector. Building on our extensive applications expertise, we work closely with you to ensure exceptional performance for a broad range of applications. We help you and other customers around the world speed up system development, reduce costs and bring vehicles and vessels to market faster.

Danfoss Power Solutions – your strongest partner in mobile hydraulics and mobile electrification.

Go to www.danfoss.com for further product information.

We offer you expert worldwide support for ensuring the best possible solutions for outstanding performance. And with an extensive network of Global Service Partners, we also provide you with comprehensive global service for all of our components.

Local address:

Danfoss Power Solutions (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239 6000 Danfoss Power Solutions GmbH & Co. OHG Krokamp 35 D-24539 Neumünster, Germany Phone: +49 4321 871 0 Danfoss Power Solutions ApS Nordborgvej 81 DK-6430 Nordborg, Denmark Phone: +45 7488 2222 Danfoss Power Solutions Trading (Shanghai) Co., Ltd. Building #22, No. 1000 Jin Hai Rd Jin Qiao, Pudong New District Shanghai, China 201206 Phone: +86 21 2080 6201

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.